利用Sentinel-1数据在塞尔维亚伏伊伏丁那省进行大豆收获检测

Miljana Marković, Branislav Živaljević, G. Mimić, Sean Woznicki, Oskar Marko, P. Lugonja
{"title":"利用Sentinel-1数据在塞尔维亚伏伊伏丁那省进行大豆收获检测","authors":"Miljana Marković, Branislav Živaljević, G. Mimić, Sean Woznicki, Oskar Marko, P. Lugonja","doi":"10.1117/12.2679417","DOIUrl":null,"url":null,"abstract":"Information on crop harvest events has become valuable input for models related to food security and agricultural management and optimization. Precise large scale harvest detection depends on temporal resolution and satellite images availability. Synthetic Aperture Radar (SAR) data are more suitable than optical, since the images are not affected by clouds. This study compares two methods for harvest detection of soybean in Vojvodina province (Serbia), using the C-band of Sentinel-1. The first method represents a maximum difference of ascending VH polarization backscatter (σVH) between consecutive dates of observation. The second method uses a Radar Vegetation Index (RVI) threshold value of 0.39, optimized to minimize Mean Absolute Error (MAE). The training data consisted of 50 m point buffers’ mean value with ground-truth harvest dates (n=100) from the 2018 and 2019 growing seasons. The first method showed better performance with Pearson correlation coefficient r=0.85 and MAE=5 days, whereas the calculated metrics for the RVI threshold method were r=0.69 and MAE=8 days. Therefore, validation was performed only for the method of maximum VH backscatter difference where mean values of parcels with ground-truth harvest dates for 2020 had generated the validation dataset (n=67). Performance metrics (r=0.83 and MAE=3 days) confirmed the suitability for accurate harvest detection. Ultimately, a soybean harvest map was generated on a parcel level for Vojvodina province.","PeriodicalId":222517,"journal":{"name":"Remote Sensing for Agriculture, Ecosystems, and Hydrology XXV","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Sentinel-1 data for soybean harvest detection in Vojvodina province, Serbia\",\"authors\":\"Miljana Marković, Branislav Živaljević, G. Mimić, Sean Woznicki, Oskar Marko, P. Lugonja\",\"doi\":\"10.1117/12.2679417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information on crop harvest events has become valuable input for models related to food security and agricultural management and optimization. Precise large scale harvest detection depends on temporal resolution and satellite images availability. Synthetic Aperture Radar (SAR) data are more suitable than optical, since the images are not affected by clouds. This study compares two methods for harvest detection of soybean in Vojvodina province (Serbia), using the C-band of Sentinel-1. The first method represents a maximum difference of ascending VH polarization backscatter (σVH) between consecutive dates of observation. The second method uses a Radar Vegetation Index (RVI) threshold value of 0.39, optimized to minimize Mean Absolute Error (MAE). The training data consisted of 50 m point buffers’ mean value with ground-truth harvest dates (n=100) from the 2018 and 2019 growing seasons. The first method showed better performance with Pearson correlation coefficient r=0.85 and MAE=5 days, whereas the calculated metrics for the RVI threshold method were r=0.69 and MAE=8 days. Therefore, validation was performed only for the method of maximum VH backscatter difference where mean values of parcels with ground-truth harvest dates for 2020 had generated the validation dataset (n=67). Performance metrics (r=0.83 and MAE=3 days) confirmed the suitability for accurate harvest detection. Ultimately, a soybean harvest map was generated on a parcel level for Vojvodina province.\",\"PeriodicalId\":222517,\"journal\":{\"name\":\"Remote Sensing for Agriculture, Ecosystems, and Hydrology XXV\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing for Agriculture, Ecosystems, and Hydrology XXV\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2679417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing for Agriculture, Ecosystems, and Hydrology XXV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2679417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Sentinel-1 data for soybean harvest detection in Vojvodina province, Serbia
Information on crop harvest events has become valuable input for models related to food security and agricultural management and optimization. Precise large scale harvest detection depends on temporal resolution and satellite images availability. Synthetic Aperture Radar (SAR) data are more suitable than optical, since the images are not affected by clouds. This study compares two methods for harvest detection of soybean in Vojvodina province (Serbia), using the C-band of Sentinel-1. The first method represents a maximum difference of ascending VH polarization backscatter (σVH) between consecutive dates of observation. The second method uses a Radar Vegetation Index (RVI) threshold value of 0.39, optimized to minimize Mean Absolute Error (MAE). The training data consisted of 50 m point buffers’ mean value with ground-truth harvest dates (n=100) from the 2018 and 2019 growing seasons. The first method showed better performance with Pearson correlation coefficient r=0.85 and MAE=5 days, whereas the calculated metrics for the RVI threshold method were r=0.69 and MAE=8 days. Therefore, validation was performed only for the method of maximum VH backscatter difference where mean values of parcels with ground-truth harvest dates for 2020 had generated the validation dataset (n=67). Performance metrics (r=0.83 and MAE=3 days) confirmed the suitability for accurate harvest detection. Ultimately, a soybean harvest map was generated on a parcel level for Vojvodina province.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Coupling multiscale remote and proximal sensors for the estimation of crop water requirements Satellite and drone multispectral and thermal images data fusion for intelligent agriculture monitoring and decision making support Infrared imaging for proximal and remote detection of soil-borne diseases on wild rocket Design and development of an innovative online modular device for both water and wastewater monitoring Application of optical data from Sentinel-2-MSI for snow cover monitoring on the territory of the mountainous region of Bulgaria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1