脑卒中风险预测的混合深度迁移学习框架

Reshma S. V, Gini R
{"title":"脑卒中风险预测的混合深度迁移学习框架","authors":"Reshma S. V, Gini R","doi":"10.59544/fpvt8168/ngcesi23p16","DOIUrl":null,"url":null,"abstract":"Stroke has become a leading cause of death and long-term disability in the world with no effective treatment. Deep learning-based approaches have the potential to outperform existing stroke risk prediction models. Due to the strict privacy protection policy in health-care systems, stroke data is usually distributed among different hospitals in small pieces. Transfer learning can solve small data issue by exploiting the knowledge of a correlated domain, especially when multiple source of data are available. In this work, we propose a novel Hybrid Deep Transfer Learning-based Stroke Risk Prediction scheme.","PeriodicalId":315694,"journal":{"name":"The International Conference on scientific innovations in Science, Technology, and Management","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Deep Transfer Learning Framework for Stroke Risk Prediction\",\"authors\":\"Reshma S. V, Gini R\",\"doi\":\"10.59544/fpvt8168/ngcesi23p16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stroke has become a leading cause of death and long-term disability in the world with no effective treatment. Deep learning-based approaches have the potential to outperform existing stroke risk prediction models. Due to the strict privacy protection policy in health-care systems, stroke data is usually distributed among different hospitals in small pieces. Transfer learning can solve small data issue by exploiting the knowledge of a correlated domain, especially when multiple source of data are available. In this work, we propose a novel Hybrid Deep Transfer Learning-based Stroke Risk Prediction scheme.\",\"PeriodicalId\":315694,\"journal\":{\"name\":\"The International Conference on scientific innovations in Science, Technology, and Management\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Conference on scientific innovations in Science, Technology, and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59544/fpvt8168/ngcesi23p16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Conference on scientific innovations in Science, Technology, and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59544/fpvt8168/ngcesi23p16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在没有有效治疗的情况下,中风已成为世界上导致死亡和长期残疾的主要原因。基于深度学习的方法有可能超越现有的中风风险预测模型。由于卫生保健系统严格的隐私保护政策,中风数据通常以小块的形式分布在不同的医院。迁移学习可以通过利用相关领域的知识来解决小数据问题,特别是在多个数据源可用的情况下。在这项工作中,我们提出了一种新的基于混合深度迁移学习的脑卒中风险预测方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Deep Transfer Learning Framework for Stroke Risk Prediction
Stroke has become a leading cause of death and long-term disability in the world with no effective treatment. Deep learning-based approaches have the potential to outperform existing stroke risk prediction models. Due to the strict privacy protection policy in health-care systems, stroke data is usually distributed among different hospitals in small pieces. Transfer learning can solve small data issue by exploiting the knowledge of a correlated domain, especially when multiple source of data are available. In this work, we propose a novel Hybrid Deep Transfer Learning-based Stroke Risk Prediction scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Tongue Diagnosis: A Deep Autoencoder Neural Network and Clustering-Based Image Segmentation Approach A study on Organizational Culture and its Impact on Employees Behaviour with special reference to TTK Prestige Ltd, Coimbatore A Study on Effectiveness of Performance Appraisal System With Reference To Santhigiri Ashram, Trivandrum Early Stage Diabetes Prediction of Patients in Big Data Healthcare Using Sophisticated Machine Learning Approach A Study on Effectiveness of Motivational on Employee with Special Reference to Shiash Info Solutions Pvt Ltd, Chennai.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1