基于IEEE 802.11ac的高分辨率室内无线定位UDP识别

Abdo Gaber, Ali M. Alsaih, A. Omar
{"title":"基于IEEE 802.11ac的高分辨率室内无线定位UDP识别","authors":"Abdo Gaber, Ali M. Alsaih, A. Omar","doi":"10.1109/WPNC.2014.6843303","DOIUrl":null,"url":null,"abstract":"This contribution is addressed to the problem of highly resolving the propagation time delays and the relative amplitudes associated with signals in multipath communication channels. The Unitary Matrix Pencil (UMP) algorithm is applied in a new way to estimate these parameters from the measured channel frequency response (CFR) using wideband orthogonal multicarrier signals. The mobile unit (MU) is often in a non-line-of-sight (NLOS) state, and the direct path could be completely blocked due to the harsh nature of indoor environments. There-fore, the estimated time delay of the first path should be identified either as a very weak detected direct path (DDP) or even as an undetected direct path (UDP). Consequently, precise estimation of the channel profile parameters is not enough for high-resolution wireless indoor positioning system. However, it stays representing a key element to identify the UDP condition. In this work, the accurate estimation of channel profile parameters and the proper modeling of DDP and UDP channel profiles will be treated and addressed to the problem of UDP identification. Experimental results using the emerging IEEE 802.11ac standard reveal that the achieved probability of correct identification can be more than 96.6% at the smallest bandwidth.","PeriodicalId":106193,"journal":{"name":"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)","volume":"81 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"UDP identification for high-resolution wireless indoor positioning based on IEEE 802.11ac\",\"authors\":\"Abdo Gaber, Ali M. Alsaih, A. Omar\",\"doi\":\"10.1109/WPNC.2014.6843303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution is addressed to the problem of highly resolving the propagation time delays and the relative amplitudes associated with signals in multipath communication channels. The Unitary Matrix Pencil (UMP) algorithm is applied in a new way to estimate these parameters from the measured channel frequency response (CFR) using wideband orthogonal multicarrier signals. The mobile unit (MU) is often in a non-line-of-sight (NLOS) state, and the direct path could be completely blocked due to the harsh nature of indoor environments. There-fore, the estimated time delay of the first path should be identified either as a very weak detected direct path (DDP) or even as an undetected direct path (UDP). Consequently, precise estimation of the channel profile parameters is not enough for high-resolution wireless indoor positioning system. However, it stays representing a key element to identify the UDP condition. In this work, the accurate estimation of channel profile parameters and the proper modeling of DDP and UDP channel profiles will be treated and addressed to the problem of UDP identification. Experimental results using the emerging IEEE 802.11ac standard reveal that the achieved probability of correct identification can be more than 96.6% at the smallest bandwidth.\",\"PeriodicalId\":106193,\"journal\":{\"name\":\"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)\",\"volume\":\"81 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPNC.2014.6843303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2014.6843303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

这一贡献解决了在多径通信信道中高度解决与信号相关的传播时间延迟和相对幅度的问题。采用统一矩阵铅笔(UMP)算法,利用宽带正交多载波信号从测量的信道频率响应(CFR)中估计这些参数。移动单元(MU)通常处于非视线(NLOS)状态,由于室内环境的恶劣性质,直接路径可能被完全阻断。因此,第一个路径的估计时间延迟应该被识别为一个非常弱的检测到的直接路径(DDP),或者甚至作为一个未检测到的直接路径(UDP)。因此,在高分辨率无线室内定位系统中,信道轮廓参数的精确估计是不够的。但是,它仍然是标识UDP条件的关键元素。在这项工作中,通道配置文件参数的准确估计以及DDP和UDP通道配置文件的适当建模将被处理并解决UDP识别问题。采用新兴的IEEE 802.11ac标准进行的实验结果表明,在最小的带宽下,正确识别的概率可以达到96.6%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UDP identification for high-resolution wireless indoor positioning based on IEEE 802.11ac
This contribution is addressed to the problem of highly resolving the propagation time delays and the relative amplitudes associated with signals in multipath communication channels. The Unitary Matrix Pencil (UMP) algorithm is applied in a new way to estimate these parameters from the measured channel frequency response (CFR) using wideband orthogonal multicarrier signals. The mobile unit (MU) is often in a non-line-of-sight (NLOS) state, and the direct path could be completely blocked due to the harsh nature of indoor environments. There-fore, the estimated time delay of the first path should be identified either as a very weak detected direct path (DDP) or even as an undetected direct path (UDP). Consequently, precise estimation of the channel profile parameters is not enough for high-resolution wireless indoor positioning system. However, it stays representing a key element to identify the UDP condition. In this work, the accurate estimation of channel profile parameters and the proper modeling of DDP and UDP channel profiles will be treated and addressed to the problem of UDP identification. Experimental results using the emerging IEEE 802.11ac standard reveal that the achieved probability of correct identification can be more than 96.6% at the smallest bandwidth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined high-resolution ranging and high data rate wireless communication system in the 60 GHz band Cramér-Rao lower bound analysis for wireless localization systems using priori information Robust cooperative localization in mixed LOS and NLOS environments using TOA Metric velocity and landmark distance estimation utilizing monocular camera images and IMU data Improved mobility modeling for indoor localization applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1