基于Siamese神经网络生成的图像检索优化二进制哈希码

Abin Jose, Timo Horstmann, J. Ohm
{"title":"基于Siamese神经网络生成的图像检索优化二进制哈希码","authors":"Abin Jose, Timo Horstmann, J. Ohm","doi":"10.23919/EUSIPCO.2018.8553380","DOIUrl":null,"url":null,"abstract":"In this paper, we use a Siamese Neural Network based hashing method for generating binary codes with certain properties. The training architecture takes a pair of images as input. The loss function trains the network so that similar images are mapped to similar binary codes and dissimilar images to different binary codes. We add additional constraints in form of loss functions that enforce certain properties on the binary codes. The main motivation of incorporating the first constraint is maximization of entropy by generating binary codes with the same number of 1s and Os. The second constraint minimizes the mutual information between binary codes by generating orthogonal binary codes for dissimilar images. For this, we introduce orthogonality criterion for binary codes consisting of the binary values 0 and 1. Furthermore, we evaluate the properties such as mutual information and entropy of the binary codes generated with the additional constraints. We also analyze the influence of different bit sizes on those properties. The retrieval performance is evaluated by measuring Mean Average Precision (MAP) values and the results are compared with other state-of-the-art approaches.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimized Binary Hashing Codes Generated by Siamese Neural Networks for Image Retrieval\",\"authors\":\"Abin Jose, Timo Horstmann, J. Ohm\",\"doi\":\"10.23919/EUSIPCO.2018.8553380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use a Siamese Neural Network based hashing method for generating binary codes with certain properties. The training architecture takes a pair of images as input. The loss function trains the network so that similar images are mapped to similar binary codes and dissimilar images to different binary codes. We add additional constraints in form of loss functions that enforce certain properties on the binary codes. The main motivation of incorporating the first constraint is maximization of entropy by generating binary codes with the same number of 1s and Os. The second constraint minimizes the mutual information between binary codes by generating orthogonal binary codes for dissimilar images. For this, we introduce orthogonality criterion for binary codes consisting of the binary values 0 and 1. Furthermore, we evaluate the properties such as mutual information and entropy of the binary codes generated with the additional constraints. We also analyze the influence of different bit sizes on those properties. The retrieval performance is evaluated by measuring Mean Average Precision (MAP) values and the results are compared with other state-of-the-art approaches.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们使用一种基于Siamese神经网络的哈希方法来生成具有特定属性的二进制代码。训练架构采用一对图像作为输入。损失函数训练网络,使相似的图像映射到相似的二进制码,不相似的图像映射到不同的二进制码。我们以损失函数的形式添加额外的约束,在二进制代码上强制某些属性。合并第一个约束的主要动机是通过生成具有相同数量的1和0的二进制代码来实现熵的最大化。第二个约束通过生成不同图像的正交二进制码来最小化二进制码之间的互信息。为此,我们引入了由二进制值0和1组成的二进制码的正交性准则。进一步,我们评估了附加约束生成的二进制码的互信息和熵等性质。我们还分析了不同比特大小对这些特性的影响。通过测量平均精度(MAP)值来评估检索性能,并将结果与其他最先进的方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Binary Hashing Codes Generated by Siamese Neural Networks for Image Retrieval
In this paper, we use a Siamese Neural Network based hashing method for generating binary codes with certain properties. The training architecture takes a pair of images as input. The loss function trains the network so that similar images are mapped to similar binary codes and dissimilar images to different binary codes. We add additional constraints in form of loss functions that enforce certain properties on the binary codes. The main motivation of incorporating the first constraint is maximization of entropy by generating binary codes with the same number of 1s and Os. The second constraint minimizes the mutual information between binary codes by generating orthogonal binary codes for dissimilar images. For this, we introduce orthogonality criterion for binary codes consisting of the binary values 0 and 1. Furthermore, we evaluate the properties such as mutual information and entropy of the binary codes generated with the additional constraints. We also analyze the influence of different bit sizes on those properties. The retrieval performance is evaluated by measuring Mean Average Precision (MAP) values and the results are compared with other state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1