基于高性能计算的主动网络态势感知

A. Wollaber, Jaime Peña, Benjamin Blease, Leslie Shing, Kenneth Alperin, Serge Vilvovsky, P. Trepagnier, Neal Wagner, Leslie Leonard
{"title":"基于高性能计算的主动网络态势感知","authors":"A. Wollaber, Jaime Peña, Benjamin Blease, Leslie Shing, Kenneth Alperin, Serge Vilvovsky, P. Trepagnier, Neal Wagner, Leslie Leonard","doi":"10.1109/HPEC.2019.8916528","DOIUrl":null,"url":null,"abstract":"Cyber situation awareness technologies have largely been focused on present-state conditions, with limited abilities to forward-project nominal conditions in a contested environment. We demonstrate an approach that uses data-driven, high performance computing (HPC) simulations of attacker/defender activities in a logically connected network environment that enables this capability for interactive, operational decision making in real time. Our contributions are three-fold: (1) we link live cyber data to inform the parameters of a cybersecurity model, (2) we perform HPC simulations and optimizations with a genetic algorithm to evaluate and recommend risk remediation strategies that inhibit attacker lateral movement, and (3) we provide a prototype platform to allow cyber defenders to assess the value of their own alternative risk reduction strategies on a relevant timeline. We present an overview of the data and software architectures, and results are presented that demonstrate operational utility alongside HPC-enabled runtimes.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"32 Pt 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Proactive Cyber Situation Awareness via High Performance Computing\",\"authors\":\"A. Wollaber, Jaime Peña, Benjamin Blease, Leslie Shing, Kenneth Alperin, Serge Vilvovsky, P. Trepagnier, Neal Wagner, Leslie Leonard\",\"doi\":\"10.1109/HPEC.2019.8916528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber situation awareness technologies have largely been focused on present-state conditions, with limited abilities to forward-project nominal conditions in a contested environment. We demonstrate an approach that uses data-driven, high performance computing (HPC) simulations of attacker/defender activities in a logically connected network environment that enables this capability for interactive, operational decision making in real time. Our contributions are three-fold: (1) we link live cyber data to inform the parameters of a cybersecurity model, (2) we perform HPC simulations and optimizations with a genetic algorithm to evaluate and recommend risk remediation strategies that inhibit attacker lateral movement, and (3) we provide a prototype platform to allow cyber defenders to assess the value of their own alternative risk reduction strategies on a relevant timeline. We present an overview of the data and software architectures, and results are presented that demonstrate operational utility alongside HPC-enabled runtimes.\",\"PeriodicalId\":184253,\"journal\":{\"name\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"32 Pt 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC.2019.8916528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

网络态势感知技术在很大程度上集中于当前状态,在竞争环境中对项目名义条件的预测能力有限。我们演示了一种方法,该方法在逻辑连接的网络环境中使用数据驱动的高性能计算(HPC)模拟攻击者/防御者的活动,使这种能力能够实时进行交互式操作决策。我们的贡献有三个方面:(1)我们将实时网络数据链接起来,以告知网络安全模型的参数;(2)我们使用遗传算法进行HPC模拟和优化,以评估和推荐抑制攻击者横向移动的风险补救策略;(3)我们提供了一个原型平台,允许网络防御者在相关时间轴上评估他们自己的替代风险降低策略的价值。我们概述了数据和软件体系结构,并展示了与支持hpc的运行时一起使用的操作实用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proactive Cyber Situation Awareness via High Performance Computing
Cyber situation awareness technologies have largely been focused on present-state conditions, with limited abilities to forward-project nominal conditions in a contested environment. We demonstrate an approach that uses data-driven, high performance computing (HPC) simulations of attacker/defender activities in a logically connected network environment that enables this capability for interactive, operational decision making in real time. Our contributions are three-fold: (1) we link live cyber data to inform the parameters of a cybersecurity model, (2) we perform HPC simulations and optimizations with a genetic algorithm to evaluate and recommend risk remediation strategies that inhibit attacker lateral movement, and (3) we provide a prototype platform to allow cyber defenders to assess the value of their own alternative risk reduction strategies on a relevant timeline. We present an overview of the data and software architectures, and results are presented that demonstrate operational utility alongside HPC-enabled runtimes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1