大规模核内线性规划的几个方面

ACM '71 Pub Date : 1900-01-01 DOI:10.1145/800184.810500
James E. Kalan
{"title":"大规模核内线性规划的几个方面","authors":"James E. Kalan","doi":"10.1145/800184.810500","DOIUrl":null,"url":null,"abstract":"Unconventional methods for matricial compression indicate that large linear programming constraint matrices may comfortably remain core-resident during optimization. Minor changes in the computational aspects of the simplex algorithm coupled with efficient inverse matrix representation show that the major portion of the inverse in product form of a basis may be embedded in the constraint matrix. A method for generating a sparse inverse matrix is presented.","PeriodicalId":126192,"journal":{"name":"ACM '71","volume":"373 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"Aspects of large-scale in-core linear programming\",\"authors\":\"James E. Kalan\",\"doi\":\"10.1145/800184.810500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unconventional methods for matricial compression indicate that large linear programming constraint matrices may comfortably remain core-resident during optimization. Minor changes in the computational aspects of the simplex algorithm coupled with efficient inverse matrix representation show that the major portion of the inverse in product form of a basis may be embedded in the constraint matrix. A method for generating a sparse inverse matrix is presented.\",\"PeriodicalId\":126192,\"journal\":{\"name\":\"ACM '71\",\"volume\":\"373 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM '71\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800184.810500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM '71","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800184.810500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

非常规的材料压缩方法表明,在优化过程中,大型线性规划约束矩阵可以舒适地保持核心驻留。单纯形算法在计算方面的微小变化加上有效的逆矩阵表示表明,逆的主要部分的乘积形式的基可以嵌入到约束矩阵。提出了一种稀疏逆矩阵的生成方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aspects of large-scale in-core linear programming
Unconventional methods for matricial compression indicate that large linear programming constraint matrices may comfortably remain core-resident during optimization. Minor changes in the computational aspects of the simplex algorithm coupled with efficient inverse matrix representation show that the major portion of the inverse in product form of a basis may be embedded in the constraint matrix. A method for generating a sparse inverse matrix is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Least Common Bigram: A dictionary arrangement technique for computerized natural-language text searching Interactive graphical spline approximation to boundary value problems System for Heuristic and Rapid Processing of Component Layout and Wiring (SHARPCLAW) A version of Beale's method avoiding the free-variables Troika for architectural planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1