砷化镓场效应晶体管的电荷增强机制:实验与模拟

D. McMorrow, J. Melinger, A. Knudson, S. Buchner, L. Tran, A. Campbell, W. Curtice
{"title":"砷化镓场效应晶体管的电荷增强机制:实验与模拟","authors":"D. McMorrow, J. Melinger, A. Knudson, S. Buchner, L. Tran, A. Campbell, W. Curtice","doi":"10.1109/RADECS.1997.698932","DOIUrl":null,"url":null,"abstract":"The charge-collection processes of GaAs field-effect transistors are investigated as a function of the incident laser pulse energy via time-resolved charge-collection measurements and by two-dimensional computer simulation. The measurements and simulations reveal a feature that persists on a time scale of 100 ps, the amplitude of which varies strongly with the injected carrier density (pulse energy). The appearance of this feature is associated with a barrier lowering effect at the source/substrate junction, coupled with the drift-assisted transport of electrons through the substrate to the drain contact. This behavior is similar, but not identical to bipolar-gain models that have been suggested previously. We introduce the concept of ion-track segments and illustrate their utility in interrogating the complex mechanisms of charge collection and enhancement in GaAs FETs.","PeriodicalId":106774,"journal":{"name":"RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Charge-enhancement mechanisms of GaAs field-effect transistors: experiment and simulation\",\"authors\":\"D. McMorrow, J. Melinger, A. Knudson, S. Buchner, L. Tran, A. Campbell, W. Curtice\",\"doi\":\"10.1109/RADECS.1997.698932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The charge-collection processes of GaAs field-effect transistors are investigated as a function of the incident laser pulse energy via time-resolved charge-collection measurements and by two-dimensional computer simulation. The measurements and simulations reveal a feature that persists on a time scale of 100 ps, the amplitude of which varies strongly with the injected carrier density (pulse energy). The appearance of this feature is associated with a barrier lowering effect at the source/substrate junction, coupled with the drift-assisted transport of electrons through the substrate to the drain contact. This behavior is similar, but not identical to bipolar-gain models that have been suggested previously. We introduce the concept of ion-track segments and illustrate their utility in interrogating the complex mechanisms of charge collection and enhancement in GaAs FETs.\",\"PeriodicalId\":106774,\"journal\":{\"name\":\"RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADECS.1997.698932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No.97TH8294)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADECS.1997.698932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

通过时间分辨电荷收集测量和二维计算机模拟,研究了砷化镓场效应晶体管的电荷收集过程与入射激光脉冲能量的关系。测量和模拟揭示了在100ps的时间尺度上持续存在的特征,其振幅随注入的载流子密度(脉冲能量)而强烈变化。这种特性的出现与源/衬底结的势垒降低效应有关,与电子通过衬底到漏极接触的漂移辅助传输有关。这种行为与先前提出的双极增益模型相似,但不完全相同。我们介绍了离子轨道段的概念,并说明了它们在研究GaAs场效应管中电荷收集和增强的复杂机制中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Charge-enhancement mechanisms of GaAs field-effect transistors: experiment and simulation
The charge-collection processes of GaAs field-effect transistors are investigated as a function of the incident laser pulse energy via time-resolved charge-collection measurements and by two-dimensional computer simulation. The measurements and simulations reveal a feature that persists on a time scale of 100 ps, the amplitude of which varies strongly with the injected carrier density (pulse energy). The appearance of this feature is associated with a barrier lowering effect at the source/substrate junction, coupled with the drift-assisted transport of electrons through the substrate to the drain contact. This behavior is similar, but not identical to bipolar-gain models that have been suggested previously. We introduce the concept of ion-track segments and illustrate their utility in interrogating the complex mechanisms of charge collection and enhancement in GaAs FETs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proton transport through graphite composite honeycomb solar array panel Thermal- and radiation-induced interface traps in MOS devices Radiation resistance of fiberoptic components and predictive models for optical fiber systems in nuclear environments Spacecraft 3-dimensional charge deposition modelling Single event functional interrupt (SEFI) sensitivity in microcircuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1