自动化工业优化的数字孪生:通过过程建模进行智能机器选择

Konstantinos Skianis, A. Giannopoulos, Alexandros Kalafatelis, P. Trakadas
{"title":"自动化工业优化的数字孪生:通过过程建模进行智能机器选择","authors":"Konstantinos Skianis, A. Giannopoulos, Alexandros Kalafatelis, P. Trakadas","doi":"10.1109/IAICT59002.2023.10205949","DOIUrl":null,"url":null,"abstract":"Digital Twin (DT) is an emerging paradigm that enables a virtual model to effectively represent a physical process. In this paper, we present the adoption of the DT scheme by an offset printing company towards industrial optimization. The considered DT model is a virtual representation that serves as the digital copy of the physical printing process within an industrial unit. A virtual model for selecting the optimal machine line was developed to ensure cost-efficient printing. The machine line selection process was modeled as a decision process and then analyzed through simulations in a safe and cost-efficient digital environment, provided by the DT. Moreover, Machine Learning (ML) models were exploited to extract knowledge for the machine selection task, taking full advantage of the DT experiment. Based on real data and selection policies of a printing enterprise, the results revealed an improvement during the selection process, followed by a 5% cost reduction on the examined dataset.","PeriodicalId":339796,"journal":{"name":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital Twin for Automated Industrial Optimization: Intelligent Machine Selection via Process Modelling\",\"authors\":\"Konstantinos Skianis, A. Giannopoulos, Alexandros Kalafatelis, P. Trakadas\",\"doi\":\"10.1109/IAICT59002.2023.10205949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital Twin (DT) is an emerging paradigm that enables a virtual model to effectively represent a physical process. In this paper, we present the adoption of the DT scheme by an offset printing company towards industrial optimization. The considered DT model is a virtual representation that serves as the digital copy of the physical printing process within an industrial unit. A virtual model for selecting the optimal machine line was developed to ensure cost-efficient printing. The machine line selection process was modeled as a decision process and then analyzed through simulations in a safe and cost-efficient digital environment, provided by the DT. Moreover, Machine Learning (ML) models were exploited to extract knowledge for the machine selection task, taking full advantage of the DT experiment. Based on real data and selection policies of a printing enterprise, the results revealed an improvement during the selection process, followed by a 5% cost reduction on the examined dataset.\",\"PeriodicalId\":339796,\"journal\":{\"name\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT59002.2023.10205949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT59002.2023.10205949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字孪生(DT)是一种新兴的范例,它使虚拟模型能够有效地表示物理过程。在本文中,我们提出了采用DT方案的胶印公司对工业优化。所考虑的DT模型是一种虚拟表示,作为工业单元内物理打印过程的数字副本。为了保证印刷的成本效益,建立了选择最优生产线的虚拟模型。机床生产线选择过程被建模为决策过程,然后在DT提供的安全且经济高效的数字环境中通过仿真进行分析。此外,利用机器学习(ML)模型为机器选择任务提取知识,充分利用DT实验的优势。基于一家印刷企业的实际数据和选择策略,结果显示在选择过程中有所改善,随后在所检查的数据集上降低了5%的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Digital Twin for Automated Industrial Optimization: Intelligent Machine Selection via Process Modelling
Digital Twin (DT) is an emerging paradigm that enables a virtual model to effectively represent a physical process. In this paper, we present the adoption of the DT scheme by an offset printing company towards industrial optimization. The considered DT model is a virtual representation that serves as the digital copy of the physical printing process within an industrial unit. A virtual model for selecting the optimal machine line was developed to ensure cost-efficient printing. The machine line selection process was modeled as a decision process and then analyzed through simulations in a safe and cost-efficient digital environment, provided by the DT. Moreover, Machine Learning (ML) models were exploited to extract knowledge for the machine selection task, taking full advantage of the DT experiment. Based on real data and selection policies of a printing enterprise, the results revealed an improvement during the selection process, followed by a 5% cost reduction on the examined dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UE Clustering Based on Grid Affinity Propagation for mmWave D2D in Virtual Small Cells Temporal-Spatial Time Series Self-Attention 2D & 3D Human Motion Forecasting An End-to-end Anchorless Approach to Recognize Hand Gestures using CenterNet Automated Human Facial Emotion Recognition System Using Depthwise Separable Convolutional Neural Network Snacks Detection Under Overlapped Conditions Using Computer Vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1