{"title":"GNSS联合定位与多径缓解的贝叶斯检测与跟踪","authors":"B. Krach, M. Lentmaier, P. Robertson","doi":"10.1109/WPNC.2008.4510372","DOIUrl":null,"url":null,"abstract":"A sequential Bayesian estimation algorithm for joint positioning and multipath mitigation in global navigation satellite systems is presented, with an underlying process model that is especially designed for dynamic user scenarios and dynamic channel conditions. In order to facilitate efficient integration into receivers it builds upon complexity reduction concepts that previously have been applied within maximum likelihood estimators. To demonstrate its capabilities simulation results are presented.","PeriodicalId":277539,"journal":{"name":"2008 5th Workshop on Positioning, Navigation and Communication","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Bayesian detection and tracking for joint positioning and multipath mitigation in GNSS\",\"authors\":\"B. Krach, M. Lentmaier, P. Robertson\",\"doi\":\"10.1109/WPNC.2008.4510372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sequential Bayesian estimation algorithm for joint positioning and multipath mitigation in global navigation satellite systems is presented, with an underlying process model that is especially designed for dynamic user scenarios and dynamic channel conditions. In order to facilitate efficient integration into receivers it builds upon complexity reduction concepts that previously have been applied within maximum likelihood estimators. To demonstrate its capabilities simulation results are presented.\",\"PeriodicalId\":277539,\"journal\":{\"name\":\"2008 5th Workshop on Positioning, Navigation and Communication\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th Workshop on Positioning, Navigation and Communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPNC.2008.4510372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th Workshop on Positioning, Navigation and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2008.4510372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian detection and tracking for joint positioning and multipath mitigation in GNSS
A sequential Bayesian estimation algorithm for joint positioning and multipath mitigation in global navigation satellite systems is presented, with an underlying process model that is especially designed for dynamic user scenarios and dynamic channel conditions. In order to facilitate efficient integration into receivers it builds upon complexity reduction concepts that previously have been applied within maximum likelihood estimators. To demonstrate its capabilities simulation results are presented.