Puneet Ramesh Savanur, Phaninder Alladi, S. Tragoudas
{"title":"基于NBTI退化的BIST伪电路检测方法","authors":"Puneet Ramesh Savanur, Phaninder Alladi, S. Tragoudas","doi":"10.1109/DFT.2015.7315148","DOIUrl":null,"url":null,"abstract":"This paper presents a simple BIST enhancement to detect counterfeit circuits which experience aging delays. The approach is based on the NBTI aging factor. HSPICE simulations on 45nm and 65nm technologies using a predictive NBTI degradation model are presented. The results indicate that counterfeit circuits undergone minimal stress are detected consistently in the presence of process variations.","PeriodicalId":383972,"journal":{"name":"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A BIST approach for counterfeit circuit detection based on NBTI degradation\",\"authors\":\"Puneet Ramesh Savanur, Phaninder Alladi, S. Tragoudas\",\"doi\":\"10.1109/DFT.2015.7315148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a simple BIST enhancement to detect counterfeit circuits which experience aging delays. The approach is based on the NBTI aging factor. HSPICE simulations on 45nm and 65nm technologies using a predictive NBTI degradation model are presented. The results indicate that counterfeit circuits undergone minimal stress are detected consistently in the presence of process variations.\",\"PeriodicalId\":383972,\"journal\":{\"name\":\"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT.2015.7315148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2015.7315148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A BIST approach for counterfeit circuit detection based on NBTI degradation
This paper presents a simple BIST enhancement to detect counterfeit circuits which experience aging delays. The approach is based on the NBTI aging factor. HSPICE simulations on 45nm and 65nm technologies using a predictive NBTI degradation model are presented. The results indicate that counterfeit circuits undergone minimal stress are detected consistently in the presence of process variations.