{"title":"一种基于MAP-TV框架的快速高光谱亚像素映射算法","authors":"Zhong Hu, Kun Gao, Zeyang Dou","doi":"10.1109/RSIP.2017.7958809","DOIUrl":null,"url":null,"abstract":"The subpixel mapping technique can obtain a fine-resolution map of target classes in the hyperspectral remote sensing image based on the spatial dependence. In recent years, the subpixel mapping methods based on Maximum A Posterior framework and Total Variation prior (MAP-TV) has received extensive attention because of its unified framework. However, due to the inherent nonlinearity of the TV prior, the traditional gradient descent algorithm to minimize MAP-TV model is inefficient. In this paper, we propose a fast algorithm to solve the MAP-TV model, which combined the fast iterative shrinkage thresholding algorithm and split Bregman algorithm together. The proposed algorithm split the original problem into several sub-problems, each sub-problem has the closed-form solution and is fast to compute. The numerical experiments reveal that the proposed algorithm is faster than the traditional methods and is suitable for the hyperspectral subpixel mapping applications.","PeriodicalId":262222,"journal":{"name":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast hyperspectral subpixel mapping algorithm based on MAP-TV framework\",\"authors\":\"Zhong Hu, Kun Gao, Zeyang Dou\",\"doi\":\"10.1109/RSIP.2017.7958809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The subpixel mapping technique can obtain a fine-resolution map of target classes in the hyperspectral remote sensing image based on the spatial dependence. In recent years, the subpixel mapping methods based on Maximum A Posterior framework and Total Variation prior (MAP-TV) has received extensive attention because of its unified framework. However, due to the inherent nonlinearity of the TV prior, the traditional gradient descent algorithm to minimize MAP-TV model is inefficient. In this paper, we propose a fast algorithm to solve the MAP-TV model, which combined the fast iterative shrinkage thresholding algorithm and split Bregman algorithm together. The proposed algorithm split the original problem into several sub-problems, each sub-problem has the closed-form solution and is fast to compute. The numerical experiments reveal that the proposed algorithm is faster than the traditional methods and is suitable for the hyperspectral subpixel mapping applications.\",\"PeriodicalId\":262222,\"journal\":{\"name\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSIP.2017.7958809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSIP.2017.7958809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fast hyperspectral subpixel mapping algorithm based on MAP-TV framework
The subpixel mapping technique can obtain a fine-resolution map of target classes in the hyperspectral remote sensing image based on the spatial dependence. In recent years, the subpixel mapping methods based on Maximum A Posterior framework and Total Variation prior (MAP-TV) has received extensive attention because of its unified framework. However, due to the inherent nonlinearity of the TV prior, the traditional gradient descent algorithm to minimize MAP-TV model is inefficient. In this paper, we propose a fast algorithm to solve the MAP-TV model, which combined the fast iterative shrinkage thresholding algorithm and split Bregman algorithm together. The proposed algorithm split the original problem into several sub-problems, each sub-problem has the closed-form solution and is fast to compute. The numerical experiments reveal that the proposed algorithm is faster than the traditional methods and is suitable for the hyperspectral subpixel mapping applications.