实时大规模融合的高分辨率三维扫描与细节保存

H. Sekkati, Jonathan Boisvert, G. Godin, L. Borgeat
{"title":"实时大规模融合的高分辨率三维扫描与细节保存","authors":"H. Sekkati, Jonathan Boisvert, G. Godin, L. Borgeat","doi":"10.1109/CRV.2018.00019","DOIUrl":null,"url":null,"abstract":"This paper presents a real-time 3D shape fusion system that faithfully integrates very high resolution 3D scans with the goal of maximizing details preservation. The system fully maps complex shapes while allowing free movement similarly to dense SLAM systems in robotics where sensor fusion techniques map large environments. We propose a novel framework to integrate shapes into a volume with fine details preservation of the reconstructed shape which is an important aspect in many applications, especially for industrial inspection. The truncated signed distance function is generalized with a global variational scheme that controls edge preservation and leads to updating cumulative rules adapted for GPU implementation. The framework also embeds a map deformation method to online deform the shape and correct the system trajectory drift at few microns accuracy. Results are presented from the integrated system on two mechanical objects which illustrate the benefits of the proposed approach.","PeriodicalId":281779,"journal":{"name":"2018 15th Conference on Computer and Robot Vision (CRV)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Large-Scale Fusion of High Resolution 3D Scans with Details Preservation\",\"authors\":\"H. Sekkati, Jonathan Boisvert, G. Godin, L. Borgeat\",\"doi\":\"10.1109/CRV.2018.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a real-time 3D shape fusion system that faithfully integrates very high resolution 3D scans with the goal of maximizing details preservation. The system fully maps complex shapes while allowing free movement similarly to dense SLAM systems in robotics where sensor fusion techniques map large environments. We propose a novel framework to integrate shapes into a volume with fine details preservation of the reconstructed shape which is an important aspect in many applications, especially for industrial inspection. The truncated signed distance function is generalized with a global variational scheme that controls edge preservation and leads to updating cumulative rules adapted for GPU implementation. The framework also embeds a map deformation method to online deform the shape and correct the system trajectory drift at few microns accuracy. Results are presented from the integrated system on two mechanical objects which illustrate the benefits of the proposed approach.\",\"PeriodicalId\":281779,\"journal\":{\"name\":\"2018 15th Conference on Computer and Robot Vision (CRV)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th Conference on Computer and Robot Vision (CRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2018.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th Conference on Computer and Robot Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种实时三维形状融合系统,该系统忠实地集成了非常高分辨率的三维扫描,目标是最大限度地保留细节。该系统完全映射复杂的形状,同时允许自由移动,类似于机器人中的密集SLAM系统,其中传感器融合技术映射大型环境。我们提出了一种新的框架,将形状整合到一个体积中,并保留重构形状的细节,这在许多应用中是一个重要的方面,特别是在工业检测中。截断的有符号距离函数用全局变分方案进行了推广,该方案控制边缘保留,并导致适合GPU实现的更新累积规则。该框架还嵌入了一种地图变形方法,可以在线变形形状并以几微米的精度纠正系统轨迹漂移。从两个机械对象的集成系统中给出了结果,说明了所提出方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-Time Large-Scale Fusion of High Resolution 3D Scans with Details Preservation
This paper presents a real-time 3D shape fusion system that faithfully integrates very high resolution 3D scans with the goal of maximizing details preservation. The system fully maps complex shapes while allowing free movement similarly to dense SLAM systems in robotics where sensor fusion techniques map large environments. We propose a novel framework to integrate shapes into a volume with fine details preservation of the reconstructed shape which is an important aspect in many applications, especially for industrial inspection. The truncated signed distance function is generalized with a global variational scheme that controls edge preservation and leads to updating cumulative rules adapted for GPU implementation. The framework also embeds a map deformation method to online deform the shape and correct the system trajectory drift at few microns accuracy. Results are presented from the integrated system on two mechanical objects which illustrate the benefits of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematic Street View Sampling: High Quality Annotation of Power Infrastructure in Rural Ontario Deep Learning-Driven Depth from Defocus via Active Multispectral Quasi-Random Projections with Complex Subpatterns De-noising of Lidar Point Clouds Corrupted by Snowfall Grading Prenatal Hydronephrosis from Ultrasound Imaging Using Deep Convolutional Neural Networks Automotive Semi-specular Surface Defect Detection System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1