电影评论和Twitter的情感分类:监督学习模型的实验研究

Oumaima Hourrane, Nouhaila Idrissi, E. Benlahmar
{"title":"电影评论和Twitter的情感分类:监督学习模型的实验研究","authors":"Oumaima Hourrane, Nouhaila Idrissi, E. Benlahmar","doi":"10.1109/ICSSD47982.2019.9003118","DOIUrl":null,"url":null,"abstract":"Sentiment classification refers to the act of putting in for natural language processing and text mining strategies to distinguish subjective textual data. Due to the huge availability of online data that coincide with the growth of social media, there has been a big interest from researchers in sentiment analysis and its applications. In this paper, we review the state of the art to determine how the previous researches have addressed this task. we also introduce an empirical study on two annotated datasets; 25,000 IMDB movie reviews and 25,000 tweets, where we used nine supervised learning models, the next step was to implement a voting ensemble classifier using the top four models we get from the previous steps. In the end, we outline a benchmark evaluation, the results show that the ensemble classifier outperforms all the machine learning models.","PeriodicalId":342806,"journal":{"name":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sentiment Classification on Movie Reviews and Twitter: An Experimental Study of Supervised Learning Models\",\"authors\":\"Oumaima Hourrane, Nouhaila Idrissi, E. Benlahmar\",\"doi\":\"10.1109/ICSSD47982.2019.9003118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentiment classification refers to the act of putting in for natural language processing and text mining strategies to distinguish subjective textual data. Due to the huge availability of online data that coincide with the growth of social media, there has been a big interest from researchers in sentiment analysis and its applications. In this paper, we review the state of the art to determine how the previous researches have addressed this task. we also introduce an empirical study on two annotated datasets; 25,000 IMDB movie reviews and 25,000 tweets, where we used nine supervised learning models, the next step was to implement a voting ensemble classifier using the top four models we get from the previous steps. In the end, we outline a benchmark evaluation, the results show that the ensemble classifier outperforms all the machine learning models.\",\"PeriodicalId\":342806,\"journal\":{\"name\":\"2019 1st International Conference on Smart Systems and Data Science (ICSSD)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Smart Systems and Data Science (ICSSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSD47982.2019.9003118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Smart Systems and Data Science (ICSSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSD47982.2019.9003118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

情感分类是指通过自然语言处理和文本挖掘策略来区分主观文本数据的行为。由于在线数据的大量可用性与社交媒体的发展相吻合,研究人员对情绪分析及其应用产生了浓厚的兴趣。在本文中,我们回顾了艺术的状态,以确定如何以前的研究已经解决了这个任务。我们还介绍了两个带注释的数据集的实证研究;25000条IMDB电影评论和25000条推文,其中我们使用了9个监督学习模型,下一步是使用我们从前面步骤中得到的前四个模型来实现投票集成分类器。最后,我们概述了一个基准评估,结果表明集成分类器优于所有的机器学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sentiment Classification on Movie Reviews and Twitter: An Experimental Study of Supervised Learning Models
Sentiment classification refers to the act of putting in for natural language processing and text mining strategies to distinguish subjective textual data. Due to the huge availability of online data that coincide with the growth of social media, there has been a big interest from researchers in sentiment analysis and its applications. In this paper, we review the state of the art to determine how the previous researches have addressed this task. we also introduce an empirical study on two annotated datasets; 25,000 IMDB movie reviews and 25,000 tweets, where we used nine supervised learning models, the next step was to implement a voting ensemble classifier using the top four models we get from the previous steps. In the end, we outline a benchmark evaluation, the results show that the ensemble classifier outperforms all the machine learning models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of Merchant Ships that Most Likely to be Autonomously Operated Adaptation of Classical Machine Learning Algorithms to Big Data Context: Problems and Challenges : Case Study: Hidden Markov Models Under Spark Predictive Process Monitoring related to the remaining time dimension: a value-driven framework Decomposition and Visualization of High-Dimensional Data in a Two Dimensional Interface Black SDN for WSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1