用于人机物理交互的有机压阻压敏机器人皮肤

Danming Wei, Ruoshi Zhang, M. Saadatzi, Olalekan O. Olowo, D. Popa
{"title":"用于人机物理交互的有机压阻压敏机器人皮肤","authors":"Danming Wei, Ruoshi Zhang, M. Saadatzi, Olalekan O. Olowo, D. Popa","doi":"10.1115/detc2020-22604","DOIUrl":null,"url":null,"abstract":"\n Pressure sensitive robotic skins have long been investigated for applications to physical human-robot interaction (pHRI). Numerous challenges related to fabrication, sensitivity, density, and reliability remain to be addressed under various environmental and use conditions. In our previous studies, we designed novel strain gauge sensor structures for robotic skin arrays. We coated these star-shaped designs with an organic polymer piezoresistive material, Poly (3, 4-ethylenedioxythiophene)-ploy(styrenesulfonate) or PEDOT: PSS and integrated sensor arrays into elastomer robotic skins. In this paper, we describe a dry etching photolithographic method to create a stable uniform sensor layer of PEDOT:PSS onto star-shaped sensors and a lamination process for creating double-sided robotic skins that can be used with temperature compensation. An integrated circuit and load testing apparatus was designed for testing the resulting robotic skin pressure performance. Experiments were conducted to measure the loading performance of the resulting sensor prototypes and results indicate that over 80% sensor yields are possible with this fabrication process.","PeriodicalId":229776,"journal":{"name":"Volume 1: 14th International Conference on Micro- and Nanosystems (MNS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Organic Piezoresistive Pressure Sensitive Robotic Skin for Physical Human-Robot Interaction\",\"authors\":\"Danming Wei, Ruoshi Zhang, M. Saadatzi, Olalekan O. Olowo, D. Popa\",\"doi\":\"10.1115/detc2020-22604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Pressure sensitive robotic skins have long been investigated for applications to physical human-robot interaction (pHRI). Numerous challenges related to fabrication, sensitivity, density, and reliability remain to be addressed under various environmental and use conditions. In our previous studies, we designed novel strain gauge sensor structures for robotic skin arrays. We coated these star-shaped designs with an organic polymer piezoresistive material, Poly (3, 4-ethylenedioxythiophene)-ploy(styrenesulfonate) or PEDOT: PSS and integrated sensor arrays into elastomer robotic skins. In this paper, we describe a dry etching photolithographic method to create a stable uniform sensor layer of PEDOT:PSS onto star-shaped sensors and a lamination process for creating double-sided robotic skins that can be used with temperature compensation. An integrated circuit and load testing apparatus was designed for testing the resulting robotic skin pressure performance. Experiments were conducted to measure the loading performance of the resulting sensor prototypes and results indicate that over 80% sensor yields are possible with this fabrication process.\",\"PeriodicalId\":229776,\"journal\":{\"name\":\"Volume 1: 14th International Conference on Micro- and Nanosystems (MNS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: 14th International Conference on Micro- and Nanosystems (MNS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: 14th International Conference on Micro- and Nanosystems (MNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

压敏机器人皮肤长期以来一直被研究用于物理人机交互(pHRI)。在各种环境和使用条件下,与制造、灵敏度、密度和可靠性相关的许多挑战仍有待解决。在我们之前的研究中,我们为机器人皮肤阵列设计了新的应变计传感器结构。我们用有机聚合物压阻材料,聚(3,4 -乙烯二氧噻吩)-聚(苯乙烯磺酸盐)或PEDOT: PSS涂覆这些星形设计,并将传感器阵列集成到弹性体机器人皮肤中。在本文中,我们描述了一种干燥蚀刻光刻方法,用于在星形传感器上创建稳定均匀的PEDOT:PSS传感器层,以及用于创建双面机器人皮肤的层压工艺,该皮肤可用于温度补偿。设计了集成电路和负载测试装置,用于测试所得机器人皮肤压力性能。实验测量了所得到的传感器原型的负载性能,结果表明,这种制造工艺可以实现80%以上的传感器产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Organic Piezoresistive Pressure Sensitive Robotic Skin for Physical Human-Robot Interaction
Pressure sensitive robotic skins have long been investigated for applications to physical human-robot interaction (pHRI). Numerous challenges related to fabrication, sensitivity, density, and reliability remain to be addressed under various environmental and use conditions. In our previous studies, we designed novel strain gauge sensor structures for robotic skin arrays. We coated these star-shaped designs with an organic polymer piezoresistive material, Poly (3, 4-ethylenedioxythiophene)-ploy(styrenesulfonate) or PEDOT: PSS and integrated sensor arrays into elastomer robotic skins. In this paper, we describe a dry etching photolithographic method to create a stable uniform sensor layer of PEDOT:PSS onto star-shaped sensors and a lamination process for creating double-sided robotic skins that can be used with temperature compensation. An integrated circuit and load testing apparatus was designed for testing the resulting robotic skin pressure performance. Experiments were conducted to measure the loading performance of the resulting sensor prototypes and results indicate that over 80% sensor yields are possible with this fabrication process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linearization of Characteristic Response of a Capacitive MEMS Pressure Sensor by Patterning the Dielectric Layer Multi-Inputs/Outputs and Cascadable MEMS Resonator-Based Computing Devices Improving Linearity of Circular Capacitive Pressure Sensor by Using a Dimple Mask Bio-MEMS Circular Plate Sensors Under Electrostatic Hard Excitations: Frequency Response of Superharmonic Resonance of Fourth Order Investigation of 3:1 Internal Resonance of Electrostatically Actuated Microbeams With Flexible Supports
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1