研究了Zr-1%Nb合金在高压扭转变形过程中的滑移效应、组织和性能的变化

D. Gunderov, A. G. Stotsky, V. Aubakirova, S. Gunderova, Y. Lebedev
{"title":"研究了Zr-1%Nb合金在高压扭转变形过程中的滑移效应、组织和性能的变化","authors":"D. Gunderov, A. G. Stotsky, V. Aubakirova, S. Gunderova, Y. Lebedev","doi":"10.18323/2782-4039-2022-4-30-37","DOIUrl":null,"url":null,"abstract":"High-pressure torsion deformation (HPT) is an effective method for transforming the structure of metallic materials, forming a nanostructural state in them, and significantly improving their strength. However, deformation achieved during HPT can be much less than expected due to the slippage. The study of the slippage effect during HPT of various materials is a topical issue. Previously, the authors proposed a simple and illustrative method for assessing slippage and the actual degree of torsion deformation achieved during HPT. Zr–1%Nb alloys, on which many studies of the HPT effect previously have been carried out, are good material for studying the slippage effect during HPT. Therefore, it is possible to compare obtained data with the results of other authors. The paper investigates the HPT impact on the structure and properties of the Zr–1%Nb alloy and demonstrates the slippage effect. The initial disk, prepared for HPT, was cut into two half-disks that were jointly placed on the strikers and exposed to joint HPT for n=¼ revolutions of anvils. The authors evaluated the slippage effect from the view of halves. The study showed that even at the initial HPT stages at n=¼ revolutions, there is a significant slippage of strikers and a sample, and the torsion deformation does not accumulate as expected. The authors analyzed the influence of various HPT modes on the microhardness, structure, and phase composition of the Zr–1%Nb alloy. The study shows that, despite the slippage effect, the Zr–1%Nb alloy is strongly hardened during HPT for one revolution (n=1) and HPT with n=10; the microhardness and tensile strength increase significantly, and up to 90 % of high-pressure ω-phases is formed in the sample. The authors conclude that during HPT, the deformation is implemented not by simple torsion but by the more complex modes.","PeriodicalId":251458,"journal":{"name":"Frontier materials & technologies","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The investigation of the slippage effect, transformation of the structure and properties of the Zr–1%Nb alloy during high-pressure torsion deformation\",\"authors\":\"D. Gunderov, A. G. Stotsky, V. Aubakirova, S. Gunderova, Y. Lebedev\",\"doi\":\"10.18323/2782-4039-2022-4-30-37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-pressure torsion deformation (HPT) is an effective method for transforming the structure of metallic materials, forming a nanostructural state in them, and significantly improving their strength. However, deformation achieved during HPT can be much less than expected due to the slippage. The study of the slippage effect during HPT of various materials is a topical issue. Previously, the authors proposed a simple and illustrative method for assessing slippage and the actual degree of torsion deformation achieved during HPT. Zr–1%Nb alloys, on which many studies of the HPT effect previously have been carried out, are good material for studying the slippage effect during HPT. Therefore, it is possible to compare obtained data with the results of other authors. The paper investigates the HPT impact on the structure and properties of the Zr–1%Nb alloy and demonstrates the slippage effect. The initial disk, prepared for HPT, was cut into two half-disks that were jointly placed on the strikers and exposed to joint HPT for n=¼ revolutions of anvils. The authors evaluated the slippage effect from the view of halves. The study showed that even at the initial HPT stages at n=¼ revolutions, there is a significant slippage of strikers and a sample, and the torsion deformation does not accumulate as expected. The authors analyzed the influence of various HPT modes on the microhardness, structure, and phase composition of the Zr–1%Nb alloy. The study shows that, despite the slippage effect, the Zr–1%Nb alloy is strongly hardened during HPT for one revolution (n=1) and HPT with n=10; the microhardness and tensile strength increase significantly, and up to 90 % of high-pressure ω-phases is formed in the sample. The authors conclude that during HPT, the deformation is implemented not by simple torsion but by the more complex modes.\",\"PeriodicalId\":251458,\"journal\":{\"name\":\"Frontier materials & technologies\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontier materials & technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18323/2782-4039-2022-4-30-37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontier materials & technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18323/2782-4039-2022-4-30-37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高压扭转变形(HPT)是改变金属材料结构,使其形成纳米结构状态,显著提高金属材料强度的有效方法。然而,由于滑移,HPT过程中实现的变形可能比预期的要小得多。研究各种材料在高温拉伸过程中的滑移效应是一个热点问题。在此之前,作者提出了一种简单明了的方法来评估HPT过程中的滑移和实际扭转变形程度。Zr-1%Nb合金是研究高温变形过程中滑移效应的良好材料,前人对其进行了大量的高温变形效应研究。因此,可以将获得的数据与其他作者的结果进行比较。研究了高温拉伸对Zr-1%Nb合金组织和性能的影响,并论证了滑移效应。为HPT准备的初始磁盘被切成两个半磁盘,它们被联合放置在打击器上,并暴露在联合HPT中进行n=¼转的铁砧。作者从两半的角度对滑移效应进行了评价。研究表明,即使在n=¼转的初始HPT阶段,走线和样品也存在明显的滑移,并且扭转变形没有像预期的那样积累。分析了不同HPT方式对Zr-1%Nb合金显微硬度、组织和相组成的影响。研究表明,尽管存在滑移效应,但Zr-1%Nb合金在1转(n=1)和10转(n= 10) HPT过程中均表现出强硬化;显微硬度和抗拉强度显著提高,样品中形成高达90%的高压ω相。作者得出结论,在高温变形过程中,变形不是由简单的扭转实现的,而是由更复杂的模态实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The investigation of the slippage effect, transformation of the structure and properties of the Zr–1%Nb alloy during high-pressure torsion deformation
High-pressure torsion deformation (HPT) is an effective method for transforming the structure of metallic materials, forming a nanostructural state in them, and significantly improving their strength. However, deformation achieved during HPT can be much less than expected due to the slippage. The study of the slippage effect during HPT of various materials is a topical issue. Previously, the authors proposed a simple and illustrative method for assessing slippage and the actual degree of torsion deformation achieved during HPT. Zr–1%Nb alloys, on which many studies of the HPT effect previously have been carried out, are good material for studying the slippage effect during HPT. Therefore, it is possible to compare obtained data with the results of other authors. The paper investigates the HPT impact on the structure and properties of the Zr–1%Nb alloy and demonstrates the slippage effect. The initial disk, prepared for HPT, was cut into two half-disks that were jointly placed on the strikers and exposed to joint HPT for n=¼ revolutions of anvils. The authors evaluated the slippage effect from the view of halves. The study showed that even at the initial HPT stages at n=¼ revolutions, there is a significant slippage of strikers and a sample, and the torsion deformation does not accumulate as expected. The authors analyzed the influence of various HPT modes on the microhardness, structure, and phase composition of the Zr–1%Nb alloy. The study shows that, despite the slippage effect, the Zr–1%Nb alloy is strongly hardened during HPT for one revolution (n=1) and HPT with n=10; the microhardness and tensile strength increase significantly, and up to 90 % of high-pressure ω-phases is formed in the sample. The authors conclude that during HPT, the deformation is implemented not by simple torsion but by the more complex modes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The formation of PEO coatings on the superelastic Ti–18Zr–15Nb alloy in calcium-containing electrolytes Finite-element simulation of fatigue behavior of a medical implant produced from titanium in the large-grained and nanostructured states The study of the structure and properties of a wear-resistant gas-thermal coating containing tungsten FORMING AN EDGED CUBIC TEXTURE IN BAND SUBSTRATES MADE OF (Cu+Ni)–Me (Me=Mo, Mn, Nb) ALLOYS FOR HIGH-TEMPERATURE SECOND-GENERATION SUPERCONDUCTORS The study of the structure and properties of a friction composite material based on an iron matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1