{"title":"大脑如何看:构建现实","authors":"S. Grossberg","doi":"10.1093/oso/9780190070557.003.0003","DOIUrl":null,"url":null,"abstract":"The distinction between seeing and knowing, and why our brains even bother to see, are discussed using vivid perceptual examples, including image features without visible qualia that can nonetheless be consciously recognized, The work of Helmholtz and Kanizsa exemplify these issues, including examples of the paradoxical facts that “all boundaries are invisible”, and that brighter objects look closer. Why we do not see the big holes in, and occluders of, our retinas that block light from reaching our photoreceptors is explained, leading to the realization that essentially all percepts are visual illusions. Why they often look real is also explained. The computationally complementary properties of boundary completion and surface filling-in are introduced and their unifying explanatory power is illustrated, including that “all conscious qualia are surface percepts”. Neon color spreading provides a vivid example, as do self-luminous, glary, and glossy percepts. How brains embody general-purpose self-organizing architectures for solving modal problems, more general than AI algorithms, but less general than digital computers, is described. New concepts and mechanisms of such architectures are explained, including hierarchical resolution of uncertainty. Examples from the visual arts and technology are described to illustrate them, including paintings of Baer, Banksy, Bleckner, da Vinci, Gene Davis, Hawthorne, Hensche, Matisse, Monet, Olitski, Seurat, and Stella. Paintings by different artists and artistic schools instinctively emphasize some brain processes over others. These choices exemplify their artistic styles. The role of perspective, T-junctions, and end gaps are used to explain how 2D pictures can induce percepts of 3D scenes.","PeriodicalId":370230,"journal":{"name":"Conscious Mind, Resonant Brain","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How a Brain Sees: Constructing Reality\",\"authors\":\"S. Grossberg\",\"doi\":\"10.1093/oso/9780190070557.003.0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distinction between seeing and knowing, and why our brains even bother to see, are discussed using vivid perceptual examples, including image features without visible qualia that can nonetheless be consciously recognized, The work of Helmholtz and Kanizsa exemplify these issues, including examples of the paradoxical facts that “all boundaries are invisible”, and that brighter objects look closer. Why we do not see the big holes in, and occluders of, our retinas that block light from reaching our photoreceptors is explained, leading to the realization that essentially all percepts are visual illusions. Why they often look real is also explained. The computationally complementary properties of boundary completion and surface filling-in are introduced and their unifying explanatory power is illustrated, including that “all conscious qualia are surface percepts”. Neon color spreading provides a vivid example, as do self-luminous, glary, and glossy percepts. How brains embody general-purpose self-organizing architectures for solving modal problems, more general than AI algorithms, but less general than digital computers, is described. New concepts and mechanisms of such architectures are explained, including hierarchical resolution of uncertainty. Examples from the visual arts and technology are described to illustrate them, including paintings of Baer, Banksy, Bleckner, da Vinci, Gene Davis, Hawthorne, Hensche, Matisse, Monet, Olitski, Seurat, and Stella. Paintings by different artists and artistic schools instinctively emphasize some brain processes over others. These choices exemplify their artistic styles. The role of perspective, T-junctions, and end gaps are used to explain how 2D pictures can induce percepts of 3D scenes.\",\"PeriodicalId\":370230,\"journal\":{\"name\":\"Conscious Mind, Resonant Brain\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conscious Mind, Resonant Brain\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780190070557.003.0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conscious Mind, Resonant Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780190070557.003.0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The distinction between seeing and knowing, and why our brains even bother to see, are discussed using vivid perceptual examples, including image features without visible qualia that can nonetheless be consciously recognized, The work of Helmholtz and Kanizsa exemplify these issues, including examples of the paradoxical facts that “all boundaries are invisible”, and that brighter objects look closer. Why we do not see the big holes in, and occluders of, our retinas that block light from reaching our photoreceptors is explained, leading to the realization that essentially all percepts are visual illusions. Why they often look real is also explained. The computationally complementary properties of boundary completion and surface filling-in are introduced and their unifying explanatory power is illustrated, including that “all conscious qualia are surface percepts”. Neon color spreading provides a vivid example, as do self-luminous, glary, and glossy percepts. How brains embody general-purpose self-organizing architectures for solving modal problems, more general than AI algorithms, but less general than digital computers, is described. New concepts and mechanisms of such architectures are explained, including hierarchical resolution of uncertainty. Examples from the visual arts and technology are described to illustrate them, including paintings of Baer, Banksy, Bleckner, da Vinci, Gene Davis, Hawthorne, Hensche, Matisse, Monet, Olitski, Seurat, and Stella. Paintings by different artists and artistic schools instinctively emphasize some brain processes over others. These choices exemplify their artistic styles. The role of perspective, T-junctions, and end gaps are used to explain how 2D pictures can induce percepts of 3D scenes.