MPSO与MSFLA元启发式脑磁共振图像分割的比较

F. Hamdaoui, A. Mtibaa, A. Sakly
{"title":"MPSO与MSFLA元启发式脑磁共振图像分割的比较","authors":"F. Hamdaoui, A. Mtibaa, A. Sakly","doi":"10.1109/STA.2014.7086725","DOIUrl":null,"url":null,"abstract":"This paper presents a comparison study between two metaheuristics swarm intelligence (SI) techniques based Particle Swarm Optimization (PSO) and Shuffled Frog Leaping Algorithm (SFLA), to solve images segmentation problems. Performances in terms of Threshold values and run time execution of both Modified PSO (MPSO) and Modified SFLA (MSFLA) algorithms are reviewed and checked through MR brain medical images application that consist of partitioning an image into two regions, so get a binary image. MPSO and MSFLA are based on a new fitness function, which justifies their appointment.","PeriodicalId":125957,"journal":{"name":"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comparison between MPSO and MSFLA metaheuristics for MR brain image segmentation\",\"authors\":\"F. Hamdaoui, A. Mtibaa, A. Sakly\",\"doi\":\"10.1109/STA.2014.7086725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparison study between two metaheuristics swarm intelligence (SI) techniques based Particle Swarm Optimization (PSO) and Shuffled Frog Leaping Algorithm (SFLA), to solve images segmentation problems. Performances in terms of Threshold values and run time execution of both Modified PSO (MPSO) and Modified SFLA (MSFLA) algorithms are reviewed and checked through MR brain medical images application that consist of partitioning an image into two regions, so get a binary image. MPSO and MSFLA are based on a new fitness function, which justifies their appointment.\",\"PeriodicalId\":125957,\"journal\":{\"name\":\"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STA.2014.7086725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA.2014.7086725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对基于粒子群优化(PSO)和青蛙跳跃算法(SFLA)的两种元启发式群体智能(SI)技术进行了比较研究,以解决图像分割问题。通过将图像分割为两个区域,得到二值图像的MR脑医学图像应用,对改进的PSO (MPSO)和改进的SFLA (MSFLA)算法在阈值和运行时执行方面的性能进行了评价和检验。MPSO和MSFLA是基于一个新的适应度函数,这证明了他们的任命是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison between MPSO and MSFLA metaheuristics for MR brain image segmentation
This paper presents a comparison study between two metaheuristics swarm intelligence (SI) techniques based Particle Swarm Optimization (PSO) and Shuffled Frog Leaping Algorithm (SFLA), to solve images segmentation problems. Performances in terms of Threshold values and run time execution of both Modified PSO (MPSO) and Modified SFLA (MSFLA) algorithms are reviewed and checked through MR brain medical images application that consist of partitioning an image into two regions, so get a binary image. MPSO and MSFLA are based on a new fitness function, which justifies their appointment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness analysis and evaluation of a PMSG-based marine current turbine system under faulty conditions Application of functional specification and operational safety conventional methods for a networked control system suitable qualitative analysis A comparative study between a 20-sim and a Simulink single PEM cell model Markerless extraction of gait features using Haar-like template for view-invariant biometrics A high gain observer coupled to a sliding mode technique for electropneumatic system control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1