{"title":"制备1.6 kv Ar+植入端端击穿设计Ni/n-SiC肖特基势垒二极管与异质结p-NiO/n-SiC二极管的综合比较","authors":"Atsushi Shimbori, H. Wong, A. Huang","doi":"10.1109/LAEDC51812.2021.9437747","DOIUrl":null,"url":null,"abstract":"A comprehensive comparison of a punch-through Ni/SiC Schottky diode with Ar+ implant edge termination and heterojunction NiO/SiC diode were conducted through fabrication, electrical evaluation, TCAD simulation analysis and reverse recovery evaluation. Both fabricated diodes exhibit high breakdown voltage of 1595V, utilizing a punch-through design. The heterojunction NiO/SiC diode has shown ×0.5 less reverse leakage current than the Ni/SiC Schottky diode due to higher barrier height. The Ni/SiC Schottky diode, on the other hand, has shown 90% less reverse recovery time, indicating a small degree of minority carrier injection for the heterojunction NiO/SiC diode.","PeriodicalId":112590,"journal":{"name":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Comparison of Fabricated 1.6-kV Punch-Through Design Ni/n-SiC Schottky Barrier Diode with Ar+ Implant Edge Termination and Heterojunction p-NiO/n-SiC Diode\",\"authors\":\"Atsushi Shimbori, H. Wong, A. Huang\",\"doi\":\"10.1109/LAEDC51812.2021.9437747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comprehensive comparison of a punch-through Ni/SiC Schottky diode with Ar+ implant edge termination and heterojunction NiO/SiC diode were conducted through fabrication, electrical evaluation, TCAD simulation analysis and reverse recovery evaluation. Both fabricated diodes exhibit high breakdown voltage of 1595V, utilizing a punch-through design. The heterojunction NiO/SiC diode has shown ×0.5 less reverse leakage current than the Ni/SiC Schottky diode due to higher barrier height. The Ni/SiC Schottky diode, on the other hand, has shown 90% less reverse recovery time, indicating a small degree of minority carrier injection for the heterojunction NiO/SiC diode.\",\"PeriodicalId\":112590,\"journal\":{\"name\":\"2021 IEEE Latin America Electron Devices Conference (LAEDC)\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Latin America Electron Devices Conference (LAEDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LAEDC51812.2021.9437747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Latin America Electron Devices Conference (LAEDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAEDC51812.2021.9437747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comprehensive Comparison of Fabricated 1.6-kV Punch-Through Design Ni/n-SiC Schottky Barrier Diode with Ar+ Implant Edge Termination and Heterojunction p-NiO/n-SiC Diode
A comprehensive comparison of a punch-through Ni/SiC Schottky diode with Ar+ implant edge termination and heterojunction NiO/SiC diode were conducted through fabrication, electrical evaluation, TCAD simulation analysis and reverse recovery evaluation. Both fabricated diodes exhibit high breakdown voltage of 1595V, utilizing a punch-through design. The heterojunction NiO/SiC diode has shown ×0.5 less reverse leakage current than the Ni/SiC Schottky diode due to higher barrier height. The Ni/SiC Schottky diode, on the other hand, has shown 90% less reverse recovery time, indicating a small degree of minority carrier injection for the heterojunction NiO/SiC diode.