配电系统高阻抗故障检测:基于傅里叶变换和人工神经网络的方法

Jonas V. de Souza, G. N. Lopes, J. Vieira, E. Asada
{"title":"配电系统高阻抗故障检测:基于傅里叶变换和人工神经网络的方法","authors":"Jonas V. de Souza, G. N. Lopes, J. Vieira, E. Asada","doi":"10.1109/WCNPS50723.2020.9263766","DOIUrl":null,"url":null,"abstract":"Several challenges for generation, transmission, and distribution of electricity arise with the expansion of electrical Distribution Systems (DSs). Continuity and the ability to serve end consumers represent a significant challenge for companies responsible for supplying electricity. Therefore, the study of the improvement of effective fault identification techniques, more specifically of High Impedance Faults (HIFs), has grown substantially. HIFs are not identified by conventional protection as this type of fault has currents with values close to those in the steady-state condition in DSs. Furthermore, due to the electric arc, the HIFs offer danger to living beings and network devices. To the date, there is no fully effective protection to detect it. Therefore, this paper aims to propose a methodology capable of identifying HIFs and classifying power quality events. To this end, the proposed technique uses low-order harmonics extracted by Fourier Transform (FT) from the current signals registered at the substation of a DS as input data for a multilayer Artificial Neural Network (ANN). The tests consisted of simulating HIFs along with several system buses and evaluating false positives (non-HIF events) by simulating frequent events in DSs. The results proved the proposed technique is promising, with a high detection rate even with the addition of noise to the signals.","PeriodicalId":385668,"journal":{"name":"2020 Workshop on Communication Networks and Power Systems (WCNPS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"High Impedance Fault Detection in Distribution Systems: An Approach Based on Fourier Transform and Artificial Neural Networks\",\"authors\":\"Jonas V. de Souza, G. N. Lopes, J. Vieira, E. Asada\",\"doi\":\"10.1109/WCNPS50723.2020.9263766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several challenges for generation, transmission, and distribution of electricity arise with the expansion of electrical Distribution Systems (DSs). Continuity and the ability to serve end consumers represent a significant challenge for companies responsible for supplying electricity. Therefore, the study of the improvement of effective fault identification techniques, more specifically of High Impedance Faults (HIFs), has grown substantially. HIFs are not identified by conventional protection as this type of fault has currents with values close to those in the steady-state condition in DSs. Furthermore, due to the electric arc, the HIFs offer danger to living beings and network devices. To the date, there is no fully effective protection to detect it. Therefore, this paper aims to propose a methodology capable of identifying HIFs and classifying power quality events. To this end, the proposed technique uses low-order harmonics extracted by Fourier Transform (FT) from the current signals registered at the substation of a DS as input data for a multilayer Artificial Neural Network (ANN). The tests consisted of simulating HIFs along with several system buses and evaluating false positives (non-HIF events) by simulating frequent events in DSs. The results proved the proposed technique is promising, with a high detection rate even with the addition of noise to the signals.\",\"PeriodicalId\":385668,\"journal\":{\"name\":\"2020 Workshop on Communication Networks and Power Systems (WCNPS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Workshop on Communication Networks and Power Systems (WCNPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCNPS50723.2020.9263766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Workshop on Communication Networks and Power Systems (WCNPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNPS50723.2020.9263766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着配电系统(DSs)的扩大,电力的产生、传输和分配面临着一些挑战。对于负责供电的公司来说,为终端消费者提供服务的连续性和能力是一项重大挑战。因此,改进有效的故障识别技术,特别是高阻抗故障(hif)的研究已经大大增加。hif不能被常规保护识别,因为这类故障的电流值接近DSs的稳态状态。此外,由于电弧,hif对生物和网络设备构成危险。到目前为止,还没有完全有效的保护措施来检测它。因此,本文旨在提出一种能够识别hif并对电能质量事件进行分类的方法。为此,提出的技术使用傅立叶变换(FT)从DS变电站注册的电流信号中提取的低阶谐波作为多层人工神经网络(ANN)的输入数据。测试包括模拟hif和几个系统总线,并通过模拟DSs中的频繁事件来评估假阳性(非hif事件)。结果表明,即使在信号中加入噪声,该方法仍具有较高的检测率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Impedance Fault Detection in Distribution Systems: An Approach Based on Fourier Transform and Artificial Neural Networks
Several challenges for generation, transmission, and distribution of electricity arise with the expansion of electrical Distribution Systems (DSs). Continuity and the ability to serve end consumers represent a significant challenge for companies responsible for supplying electricity. Therefore, the study of the improvement of effective fault identification techniques, more specifically of High Impedance Faults (HIFs), has grown substantially. HIFs are not identified by conventional protection as this type of fault has currents with values close to those in the steady-state condition in DSs. Furthermore, due to the electric arc, the HIFs offer danger to living beings and network devices. To the date, there is no fully effective protection to detect it. Therefore, this paper aims to propose a methodology capable of identifying HIFs and classifying power quality events. To this end, the proposed technique uses low-order harmonics extracted by Fourier Transform (FT) from the current signals registered at the substation of a DS as input data for a multilayer Artificial Neural Network (ANN). The tests consisted of simulating HIFs along with several system buses and evaluating false positives (non-HIF events) by simulating frequent events in DSs. The results proved the proposed technique is promising, with a high detection rate even with the addition of noise to the signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Traveling Waves Propagation Characteristics Considering Different Transmission Line EMTP Models A SHA-3 Co-Processor for IoT Applications Management of an Electrical Storage System for Joint Energy Arbitrage and Improvement of Voltage Profile IoT Fog-based Image Matching Monitoring System for Physical Access Control through IP Camera Devices Segmentation and Entropy Coding Analysis of a Data Compression System for Power Quality Disturbances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1