VAD评估框架CENSREC-1-C的开发及VAD与语音识别性能关系的研究

N. Kitaoka, Kazumasa Yamamoto, Tomohiro Kusamizu, S. Nakagawa, Takeshi Yamada, S. Tsuge, C. Miyajima, T. Nishiura, M. Nakayama, Y. Denda, M. Fujimoto, T. Takiguchi, S. Tamura, S. Kuroiwa, K. Takeda, Satoshi Nakamura
{"title":"VAD评估框架CENSREC-1-C的开发及VAD与语音识别性能关系的研究","authors":"N. Kitaoka, Kazumasa Yamamoto, Tomohiro Kusamizu, S. Nakagawa, Takeshi Yamada, S. Tsuge, C. Miyajima, T. Nishiura, M. Nakayama, Y. Denda, M. Fujimoto, T. Takiguchi, S. Tamura, S. Kuroiwa, K. Takeda, Satoshi Nakamura","doi":"10.1109/ASRU.2007.4430182","DOIUrl":null,"url":null,"abstract":"Voice activity detection (VAD) plays an important role in speech processing including speech recognition, speech enhancement, and speech coding in noisy environments. We developed an evaluation framework for VAD in such environments, called corpus and environment for noisy speech recognition 1 concatenated (CENSREC-1-C). This framework consists of noisy continuous digit utterances and evaluation tools for VAD results. By adoptiong two evaluation measures, one for frame-level detection performance and the other for utterance-level detection performance, we provide the evaluation results of a power-based VAD method as a baseline. When using VAD in speech recognizer, the detected speech segments are extended to avoid the loss of speech frames and the pause segments are then absorbed by a pause model. We investigate the balance of an explicit segmentation by VAD and an implicit segmentation by a pause model using an experimental simulation of segment extension and show that a small extension improves speech recognition.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Development of VAD evaluation framework CENSREC-1-C and investigation of relationship between VAD and speech recognition performance\",\"authors\":\"N. Kitaoka, Kazumasa Yamamoto, Tomohiro Kusamizu, S. Nakagawa, Takeshi Yamada, S. Tsuge, C. Miyajima, T. Nishiura, M. Nakayama, Y. Denda, M. Fujimoto, T. Takiguchi, S. Tamura, S. Kuroiwa, K. Takeda, Satoshi Nakamura\",\"doi\":\"10.1109/ASRU.2007.4430182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Voice activity detection (VAD) plays an important role in speech processing including speech recognition, speech enhancement, and speech coding in noisy environments. We developed an evaluation framework for VAD in such environments, called corpus and environment for noisy speech recognition 1 concatenated (CENSREC-1-C). This framework consists of noisy continuous digit utterances and evaluation tools for VAD results. By adoptiong two evaluation measures, one for frame-level detection performance and the other for utterance-level detection performance, we provide the evaluation results of a power-based VAD method as a baseline. When using VAD in speech recognizer, the detected speech segments are extended to avoid the loss of speech frames and the pause segments are then absorbed by a pause model. We investigate the balance of an explicit segmentation by VAD and an implicit segmentation by a pause model using an experimental simulation of segment extension and show that a small extension improves speech recognition.\",\"PeriodicalId\":371729,\"journal\":{\"name\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2007.4430182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

语音活动检测(VAD)在噪声环境下的语音识别、语音增强和语音编码等语音处理中起着重要的作用。我们开发了一个在这种环境下的VAD评估框架,称为语料库和噪声语音识别环境1连接(CENSREC-1-C)。该框架由噪声连续数字话语和VAD结果评估工具组成。采用帧级检测性能和话语级检测性能两种评价指标,给出基于功率的VAD方法的评价结果作为基线。在语音识别器中使用VAD时,对检测到的语音片段进行扩展以避免语音帧的丢失,然后将暂停片段由暂停模型吸收。通过对语音片段扩展的实验模拟,我们研究了VAD显式分割和暂停模型隐式分割的平衡,并证明了小的扩展可以改善语音识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of VAD evaluation framework CENSREC-1-C and investigation of relationship between VAD and speech recognition performance
Voice activity detection (VAD) plays an important role in speech processing including speech recognition, speech enhancement, and speech coding in noisy environments. We developed an evaluation framework for VAD in such environments, called corpus and environment for noisy speech recognition 1 concatenated (CENSREC-1-C). This framework consists of noisy continuous digit utterances and evaluation tools for VAD results. By adoptiong two evaluation measures, one for frame-level detection performance and the other for utterance-level detection performance, we provide the evaluation results of a power-based VAD method as a baseline. When using VAD in speech recognizer, the detected speech segments are extended to avoid the loss of speech frames and the pause segments are then absorbed by a pause model. We investigate the balance of an explicit segmentation by VAD and an implicit segmentation by a pause model using an experimental simulation of segment extension and show that a small extension improves speech recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1