基于随机森林和WRF模型的导体覆冰厚度预测

Qi Wang, Shaohui Zhou, Hourong Zhang, Haohui Su, Wenjian Zheng
{"title":"基于随机森林和WRF模型的导体覆冰厚度预测","authors":"Qi Wang, Shaohui Zhou, Hourong Zhang, Haohui Su, Wenjian Zheng","doi":"10.1109/ICAA53760.2021.00174","DOIUrl":null,"url":null,"abstract":"In this paper, the ice thickness prediction model of WRF field prediction elements is constructed using Makkonen icing model using comprehensive monitoring data of high-voltage transmission line ice accumulation in five southern provinces from Dec. 13, 2020 to Dec. 19, 2020. For the random forest algorithm, the actual icing thickness derived by conductor tension is inputted, 19 predictor variables are selected, such as tower number, phase, and predicted ice thickness value. The WRF-random forest model for icing prediction is constructed, and the best parameters are found by using Bayesian parameter optimization method, showing a coefficient of determination of 0.968 for the training set and 0.949 for the testing set.","PeriodicalId":121879,"journal":{"name":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Conductor Icing Thickness Based on Random Forest and WRF Models\",\"authors\":\"Qi Wang, Shaohui Zhou, Hourong Zhang, Haohui Su, Wenjian Zheng\",\"doi\":\"10.1109/ICAA53760.2021.00174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the ice thickness prediction model of WRF field prediction elements is constructed using Makkonen icing model using comprehensive monitoring data of high-voltage transmission line ice accumulation in five southern provinces from Dec. 13, 2020 to Dec. 19, 2020. For the random forest algorithm, the actual icing thickness derived by conductor tension is inputted, 19 predictor variables are selected, such as tower number, phase, and predicted ice thickness value. The WRF-random forest model for icing prediction is constructed, and the best parameters are found by using Bayesian parameter optimization method, showing a coefficient of determination of 0.968 for the training set and 0.949 for the testing set.\",\"PeriodicalId\":121879,\"journal\":{\"name\":\"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAA53760.2021.00174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Computing, Automation and Applications (ICAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAA53760.2021.00174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用2020年12月13日至12月19日南方五省高压输电线路积冰综合监测数据,利用Makkonen结冰模型构建WRF现场预测要素冰厚预测模型。随机森林算法输入导线张力推导出的实际结冰厚度,选取塔号、相位、预测冰厚值等19个预测变量。构建了用于结冰预测的wrf -随机森林模型,利用贝叶斯参数优化方法找到了最优参数,训练集的决定系数为0.968,测试集的决定系数为0.949。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Conductor Icing Thickness Based on Random Forest and WRF Models
In this paper, the ice thickness prediction model of WRF field prediction elements is constructed using Makkonen icing model using comprehensive monitoring data of high-voltage transmission line ice accumulation in five southern provinces from Dec. 13, 2020 to Dec. 19, 2020. For the random forest algorithm, the actual icing thickness derived by conductor tension is inputted, 19 predictor variables are selected, such as tower number, phase, and predicted ice thickness value. The WRF-random forest model for icing prediction is constructed, and the best parameters are found by using Bayesian parameter optimization method, showing a coefficient of determination of 0.968 for the training set and 0.949 for the testing set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discussion on Big Data Network Public Opinion in Colleges and Universities Robot Path Planning Based on Fusion Improved Ant Colony Algorithm Intra-and-inter Sentence Attention Model for Enhanced Question Answering System Mobile Application GUI Similarity Comparison Based on Perceptual Hash for Automated Robot Testing Discuss on Functions and Design of Virtual Travel Communities for Seniors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1