空间辐射SEE测试中皮秒脉冲激光损伤先进技术的失效分析

C. T. Chua, Q. Liu, S. Chef, K. Sanchez, P. Pcrdu, C. Gan
{"title":"空间辐射SEE测试中皮秒脉冲激光损伤先进技术的失效分析","authors":"C. T. Chua, Q. Liu, S. Chef, K. Sanchez, P. Pcrdu, C. Gan","doi":"10.1109/IPFA.2018.8452544","DOIUrl":null,"url":null,"abstract":"Picosecond pulsed laser, customarily perceived to offer advantages of flexibility and ease of testing over heavy ion particle accelerator test, was conducted on a chain of inverters during Single Event Effect (SEE) evaluation. In this paper, we report on the unexpected permanent damage induced by 1064 nm pulsed laser on test structures fabricated with 65 nm bulk CMOS process technology. Light emission microscopy (EMMI) localized hotspots within the area previously scanned by the pulsed laser. Electro Optical Frequency Mapping (EOFM) verified the undesired termination of signal propagation along the chain of inverters while Electro Optical Probing (EOP) confirmed the unexpected phase change and eventual loss of the output signal waveform. Focused Ion Beam (FIB), Transmission Microscopy (TEM) and Energy Dispersive X-ray spectroscopy (EDX) confirmed the physical failure and identified nickel as the diffusing species. This paper aims to advise caution to the research communities (both space radiation and optical failure analysis) in employing similar laser test technique and highlights the need to define the safe operating region of such technique, especially for emerging technology nodes.","PeriodicalId":382811,"journal":{"name":"2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Failure Analysis of Damages on Advanced Technologies Induced by Picosecond Pulsed Laser During Space Radiation SEE Testing\",\"authors\":\"C. T. Chua, Q. Liu, S. Chef, K. Sanchez, P. Pcrdu, C. Gan\",\"doi\":\"10.1109/IPFA.2018.8452544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Picosecond pulsed laser, customarily perceived to offer advantages of flexibility and ease of testing over heavy ion particle accelerator test, was conducted on a chain of inverters during Single Event Effect (SEE) evaluation. In this paper, we report on the unexpected permanent damage induced by 1064 nm pulsed laser on test structures fabricated with 65 nm bulk CMOS process technology. Light emission microscopy (EMMI) localized hotspots within the area previously scanned by the pulsed laser. Electro Optical Frequency Mapping (EOFM) verified the undesired termination of signal propagation along the chain of inverters while Electro Optical Probing (EOP) confirmed the unexpected phase change and eventual loss of the output signal waveform. Focused Ion Beam (FIB), Transmission Microscopy (TEM) and Energy Dispersive X-ray spectroscopy (EDX) confirmed the physical failure and identified nickel as the diffusing species. This paper aims to advise caution to the research communities (both space radiation and optical failure analysis) in employing similar laser test technique and highlights the need to define the safe operating region of such technique, especially for emerging technology nodes.\",\"PeriodicalId\":382811,\"journal\":{\"name\":\"2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA.2018.8452544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA.2018.8452544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

皮秒脉冲激光通常被认为比重离子粒子加速器测试更具灵活性和易用性,在单事件效应(SEE)评估期间,在一系列逆变器上进行了测试。本文报道了1064nm脉冲激光对采用65nm本体CMOS工艺制作的测试结构所造成的意外永久性损伤。光发射显微镜(EMMI)将热点定位在脉冲激光先前扫描的区域内。光电频率映射(EOFM)验证了信号沿逆变器链传播的意外终止,而光电探测(EOP)证实了输出信号波形的意外相位变化和最终损失。聚焦离子束(FIB)、透射电镜(TEM)和能量色散x射线光谱(EDX)证实了物理破坏,并确定镍为扩散物质。本文旨在建议研究界(包括空间辐射和光学失效分析)在采用类似的激光测试技术时要谨慎,并强调需要定义这种技术的安全操作区域,特别是对于新兴技术节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Failure Analysis of Damages on Advanced Technologies Induced by Picosecond Pulsed Laser During Space Radiation SEE Testing
Picosecond pulsed laser, customarily perceived to offer advantages of flexibility and ease of testing over heavy ion particle accelerator test, was conducted on a chain of inverters during Single Event Effect (SEE) evaluation. In this paper, we report on the unexpected permanent damage induced by 1064 nm pulsed laser on test structures fabricated with 65 nm bulk CMOS process technology. Light emission microscopy (EMMI) localized hotspots within the area previously scanned by the pulsed laser. Electro Optical Frequency Mapping (EOFM) verified the undesired termination of signal propagation along the chain of inverters while Electro Optical Probing (EOP) confirmed the unexpected phase change and eventual loss of the output signal waveform. Focused Ion Beam (FIB), Transmission Microscopy (TEM) and Energy Dispersive X-ray spectroscopy (EDX) confirmed the physical failure and identified nickel as the diffusing species. This paper aims to advise caution to the research communities (both space radiation and optical failure analysis) in employing similar laser test technique and highlights the need to define the safe operating region of such technique, especially for emerging technology nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faster Localization of Logic Soft Failures Using a Combination of Scan Diagnosis at Reduced VDD and LADA Case Study and Application on Failure Analysis for Power Device Failure Analysis Techniques for 3D Packages Impact of Wire RC Based on High Voltage SCAN Failure Analysis in 10nm Process Contactless Fault Isolation of Ultra Low k Dielectrics in Soft Breakdown Condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1