取消了Stackelberg计划

Philipp Sauer, Marcel Steinmetz, R. Künnemann, Jörg Hoffmann
{"title":"取消了Stackelberg计划","authors":"Philipp Sauer, Marcel Steinmetz, R. Künnemann, Jörg Hoffmann","doi":"10.1609/icaps.v33i1.27215","DOIUrl":null,"url":null,"abstract":"In Stackelberg planning, a leader and a follower each choose a plan in the same planning task, the leader's objective being to maximize plan cost for the follower. This formulation naturally captures, among others, security-related scenarios where the leader defends an infrastructure against subsequent attacks by the follower. Indeed, Stackelberg planning has been applied to the analysis of email infrastructure security. At web scale, however, the planning tasks involved easily contain tens of thousands of objects, so that grounding becomes the bottleneck. Here we introduce a lifted form of Stackelberg planning to address this. We devise leader-follower search algorithms working at the level of the PDDL-style input model to the extent possible. Our experiments show that, in Stackelberg tasks with many objects, including in particular models of web infrastructure security, our lifted algorithms outperform grounded Stackelberg planning.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lifted Stackelberg Planning\",\"authors\":\"Philipp Sauer, Marcel Steinmetz, R. Künnemann, Jörg Hoffmann\",\"doi\":\"10.1609/icaps.v33i1.27215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Stackelberg planning, a leader and a follower each choose a plan in the same planning task, the leader's objective being to maximize plan cost for the follower. This formulation naturally captures, among others, security-related scenarios where the leader defends an infrastructure against subsequent attacks by the follower. Indeed, Stackelberg planning has been applied to the analysis of email infrastructure security. At web scale, however, the planning tasks involved easily contain tens of thousands of objects, so that grounding becomes the bottleneck. Here we introduce a lifted form of Stackelberg planning to address this. We devise leader-follower search algorithms working at the level of the PDDL-style input model to the extent possible. Our experiments show that, in Stackelberg tasks with many objects, including in particular models of web infrastructure security, our lifted algorithms outperform grounded Stackelberg planning.\",\"PeriodicalId\":239898,\"journal\":{\"name\":\"International Conference on Automated Planning and Scheduling\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automated Planning and Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icaps.v33i1.27215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v33i1.27215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在Stackelberg规划中,领导者和追随者在同一个规划任务中各自选择一个计划,领导者的目标是使追随者的计划成本最大化。这个公式自然地捕获了与安全相关的场景,其中领导者保护基础设施免受后续追随者的攻击。事实上,Stackelberg规划已被应用于电子邮件基础设施安全性的分析。然而,在网络规模下,所涉及的规划任务很容易包含成千上万的对象,因此接地成为瓶颈。在这里,我们引入一种改进的Stackelberg计划来解决这个问题。我们设计了尽可能在pddl风格输入模型级别上工作的领导-追随者搜索算法。我们的实验表明,在具有许多对象的Stackelberg任务中,包括web基础设施安全的特定模型,我们的提升算法优于基础Stackelberg规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lifted Stackelberg Planning
In Stackelberg planning, a leader and a follower each choose a plan in the same planning task, the leader's objective being to maximize plan cost for the follower. This formulation naturally captures, among others, security-related scenarios where the leader defends an infrastructure against subsequent attacks by the follower. Indeed, Stackelberg planning has been applied to the analysis of email infrastructure security. At web scale, however, the planning tasks involved easily contain tens of thousands of objects, so that grounding becomes the bottleneck. Here we introduce a lifted form of Stackelberg planning to address this. We devise leader-follower search algorithms working at the level of the PDDL-style input model to the extent possible. Our experiments show that, in Stackelberg tasks with many objects, including in particular models of web infrastructure security, our lifted algorithms outperform grounded Stackelberg planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows Generalizing Action Justification and Causal Links to Policies Exact Anytime Multi-Agent Path Finding Using Branch-and-Cut-and-Price and Large Neighborhood Search A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1