采用柔性机构的一体式3d打印腿,为六足机器人运动产生有效的推进力

Atsushi Kaneko, D. Owaki, M. Shimizu, T. Umedachi
{"title":"采用柔性机构的一体式3d打印腿,为六足机器人运动产生有效的推进力","authors":"Atsushi Kaneko, D. Owaki, M. Shimizu, T. Umedachi","doi":"10.1109/RoboSoft55895.2023.10121937","DOIUrl":null,"url":null,"abstract":"Bio-inspired soft robotic legs can be designed by utilizing continuous deformation to perform desired functions such as increasing propulsion force. Previous studies of legged robots have improved locomotion performance by simplifying animal legs as a single spring and mimicking the function of its elasticity during locomotion. This study proposes a one-piece 3D-printed leg that can kick the ground backward strongly by increasing the horizontal component of the elastic force (i.e., by designing two-dimensional elasticity). The geometry and stiffness of the leg were optimized via a combination of physical simulation and a genetic algorithm to achieve the function. Experiments using a prototype hexapod robot were conducted to compare a leg designed using the proposed method and two additional deteriorated types of legs by measuring locomotion speed. Angle of attack (angle at which the legs touch the ground) was also changed in this experiment. The experimental results indicate that designing the two-dimensional elasticity of legs can contribute to increasing propulsion force, resulting in higher locomotion speed. This study suggests that soft robotic parts with various functions, such as hands and arms, can be designed using continuous deformation and one-piece 3D-printed parts.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Piece 3D-Printed Legs Using Compliant Mechanisms That Produce Effective Propulsive Force for Hexapod Robot Locomotion\",\"authors\":\"Atsushi Kaneko, D. Owaki, M. Shimizu, T. Umedachi\",\"doi\":\"10.1109/RoboSoft55895.2023.10121937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bio-inspired soft robotic legs can be designed by utilizing continuous deformation to perform desired functions such as increasing propulsion force. Previous studies of legged robots have improved locomotion performance by simplifying animal legs as a single spring and mimicking the function of its elasticity during locomotion. This study proposes a one-piece 3D-printed leg that can kick the ground backward strongly by increasing the horizontal component of the elastic force (i.e., by designing two-dimensional elasticity). The geometry and stiffness of the leg were optimized via a combination of physical simulation and a genetic algorithm to achieve the function. Experiments using a prototype hexapod robot were conducted to compare a leg designed using the proposed method and two additional deteriorated types of legs by measuring locomotion speed. Angle of attack (angle at which the legs touch the ground) was also changed in this experiment. The experimental results indicate that designing the two-dimensional elasticity of legs can contribute to increasing propulsion force, resulting in higher locomotion speed. This study suggests that soft robotic parts with various functions, such as hands and arms, can be designed using continuous deformation and one-piece 3D-printed parts.\",\"PeriodicalId\":250981,\"journal\":{\"name\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoboSoft55895.2023.10121937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10121937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

仿生软机器人腿可以通过利用连续变形来实现所需的功能,如增加推进力。先前的有腿机器人研究通过将动物腿简化为单个弹簧并模拟其在运动过程中的弹性功能来提高运动性能。本研究提出了一种连体3d打印腿,通过增加弹性力的水平分量(即通过设计二维弹性),可以强烈地向后踢地。通过物理模拟和遗传算法相结合的方法对腿的几何形状和刚度进行优化,以实现该功能。利用六足机器人原型进行实验,通过测量运动速度,将采用该方法设计的腿与另外两种退化类型的腿进行比较。攻角(腿接触地面的角度)在实验中也发生了变化。实验结果表明,设计腿的二维弹性有助于增加推进力,从而提高运动速度。这项研究表明,可以使用连续变形和一体式3d打印部件来设计具有各种功能的柔性机器人部件,例如手和手臂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One-Piece 3D-Printed Legs Using Compliant Mechanisms That Produce Effective Propulsive Force for Hexapod Robot Locomotion
Bio-inspired soft robotic legs can be designed by utilizing continuous deformation to perform desired functions such as increasing propulsion force. Previous studies of legged robots have improved locomotion performance by simplifying animal legs as a single spring and mimicking the function of its elasticity during locomotion. This study proposes a one-piece 3D-printed leg that can kick the ground backward strongly by increasing the horizontal component of the elastic force (i.e., by designing two-dimensional elasticity). The geometry and stiffness of the leg were optimized via a combination of physical simulation and a genetic algorithm to achieve the function. Experiments using a prototype hexapod robot were conducted to compare a leg designed using the proposed method and two additional deteriorated types of legs by measuring locomotion speed. Angle of attack (angle at which the legs touch the ground) was also changed in this experiment. The experimental results indicate that designing the two-dimensional elasticity of legs can contribute to increasing propulsion force, resulting in higher locomotion speed. This study suggests that soft robotic parts with various functions, such as hands and arms, can be designed using continuous deformation and one-piece 3D-printed parts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Modular Bio-inspired Robotic Hand with High Sensitivity Sensorizing a Compression Sleeve for Continuous Pressure Monitoring and Lymphedema Treatment Using Pneumatic or Resistive Sensors Fabrication and Characterization of a Passive Variable Stiffness Joint based on Shear Thickening Fluids A Soft Wearable Robot to Support Scapular Adduction and Abduction for Respiratory Rehabilitation Design of 3D-Printed Continuum Robots Using Topology Optimized Compliant Joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1