{"title":"超高导热包装材料","authors":"C. Zweben","doi":"10.1109/STHERM.2005.1412174","DOIUrl":null,"url":null,"abstract":"Thermal management problems are now critical in microelectronic and optoelectronic packaging. In response to the serious limitations of traditional packaging materials, material suppliers are developing an increasing number of new thermal management materials with low coefficients of thermal expansion (CTEs), ultrahigh thermal conductivities (CT), and low densities. There are now 15 low-CTE materials with CT between that of copper (400 W/m-K) and four times that of copper (1600 W/m-K), several of which are being used in production applications. Thermally conductive carbon fibers are being used to reduce the CTEs and increase the CT of printed circuit boards. These materials greatly expand the options of the packaging engineer, making it possible to eliminate heat pipes and fans. This paper provides an overview of the state of the art of advanced packaging materials, including their key properties, state of maturity, applications, manufacturing, cost and lessons learned. We also look at likely future directions, including nanocomposites.","PeriodicalId":256936,"journal":{"name":"Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Ultrahigh-thermal-conductivity packaging materials\",\"authors\":\"C. Zweben\",\"doi\":\"10.1109/STHERM.2005.1412174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thermal management problems are now critical in microelectronic and optoelectronic packaging. In response to the serious limitations of traditional packaging materials, material suppliers are developing an increasing number of new thermal management materials with low coefficients of thermal expansion (CTEs), ultrahigh thermal conductivities (CT), and low densities. There are now 15 low-CTE materials with CT between that of copper (400 W/m-K) and four times that of copper (1600 W/m-K), several of which are being used in production applications. Thermally conductive carbon fibers are being used to reduce the CTEs and increase the CT of printed circuit boards. These materials greatly expand the options of the packaging engineer, making it possible to eliminate heat pipes and fans. This paper provides an overview of the state of the art of advanced packaging materials, including their key properties, state of maturity, applications, manufacturing, cost and lessons learned. We also look at likely future directions, including nanocomposites.\",\"PeriodicalId\":256936,\"journal\":{\"name\":\"Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005.\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STHERM.2005.1412174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STHERM.2005.1412174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal management problems are now critical in microelectronic and optoelectronic packaging. In response to the serious limitations of traditional packaging materials, material suppliers are developing an increasing number of new thermal management materials with low coefficients of thermal expansion (CTEs), ultrahigh thermal conductivities (CT), and low densities. There are now 15 low-CTE materials with CT between that of copper (400 W/m-K) and four times that of copper (1600 W/m-K), several of which are being used in production applications. Thermally conductive carbon fibers are being used to reduce the CTEs and increase the CT of printed circuit boards. These materials greatly expand the options of the packaging engineer, making it possible to eliminate heat pipes and fans. This paper provides an overview of the state of the art of advanced packaging materials, including their key properties, state of maturity, applications, manufacturing, cost and lessons learned. We also look at likely future directions, including nanocomposites.