验证窥视孔优化的CompCert

Eric Mullen, Daryl Zuniga, Zachary Tatlock, D. Grossman
{"title":"验证窥视孔优化的CompCert","authors":"Eric Mullen, Daryl Zuniga, Zachary Tatlock, D. Grossman","doi":"10.1145/2908080.2908109","DOIUrl":null,"url":null,"abstract":"Transformations over assembly code are common in many compilers. These transformations are also some of the most bug-dense compiler components. Such bugs could be elim- inated by formally verifying the compiler, but state-of-the- art formally verified compilers like CompCert do not sup- port assembly-level program transformations. This paper presents Peek, a framework for expressing, verifying, and running meaning-preserving assembly-level program trans- formations in CompCert. Peek contributes four new com- ponents: a lower level semantics for CompCert x86 syntax, a liveness analysis, a library for expressing and verifying peephole optimizations, and a verified peephole optimiza- tion pass built into CompCert. Each of these is accompanied by a correctness proof in Coq against realistic assumptions about the calling convention and the system memory alloca- tor. Verifying peephole optimizations in Peek requires prov- ing only a set of local properties, which we have proved are sufficient to ensure global transformation correctness. We have proven these local properties for 28 peephole transfor- mations from the literature. We discuss the development of our new assembly semantics, liveness analysis, representa- tion of program transformations, and execution engine; de- scribe the verification challenges of each component; and detail techniques we applied to mitigate the proof burden.","PeriodicalId":178839,"journal":{"name":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Verified peephole optimizations for CompCert\",\"authors\":\"Eric Mullen, Daryl Zuniga, Zachary Tatlock, D. Grossman\",\"doi\":\"10.1145/2908080.2908109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Transformations over assembly code are common in many compilers. These transformations are also some of the most bug-dense compiler components. Such bugs could be elim- inated by formally verifying the compiler, but state-of-the- art formally verified compilers like CompCert do not sup- port assembly-level program transformations. This paper presents Peek, a framework for expressing, verifying, and running meaning-preserving assembly-level program trans- formations in CompCert. Peek contributes four new com- ponents: a lower level semantics for CompCert x86 syntax, a liveness analysis, a library for expressing and verifying peephole optimizations, and a verified peephole optimiza- tion pass built into CompCert. Each of these is accompanied by a correctness proof in Coq against realistic assumptions about the calling convention and the system memory alloca- tor. Verifying peephole optimizations in Peek requires prov- ing only a set of local properties, which we have proved are sufficient to ensure global transformation correctness. We have proven these local properties for 28 peephole transfor- mations from the literature. We discuss the development of our new assembly semantics, liveness analysis, representa- tion of program transformations, and execution engine; de- scribe the verification challenges of each component; and detail techniques we applied to mitigate the proof burden.\",\"PeriodicalId\":178839,\"journal\":{\"name\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2908080.2908109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2908080.2908109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

汇编代码的转换在许多编译器中都很常见。这些转换也是bug最多的编译器组件之一。这样的bug可以通过正式验证编译器来消除,但是像CompCert这样经过正式验证的最先进的编译器不支持汇编级别的程序转换。本文介绍了Peek,一个在CompCert中表达、验证和运行保持意义的汇编级程序转换的框架。Peek提供了四个新组件:用于CompCert x86语法的低级语义、动态分析、用于表达和验证窥视孔优化的库,以及内置在CompCert中的经过验证的窥视孔优化通道。每种方法都伴随着Coq中对调用约定和系统内存分配器的现实假设的正确性证明。验证Peek中的窥视孔优化只需要证明一组局部属性,我们已经证明这些属性足以确保全局转换的正确性。我们已经从文献中证明了28个小孔变换的这些局部性质。我们讨论了新的汇编语义、动态分析、程序转换的表示和执行引擎的发展;描述每个组件的验证挑战;以及我们用来减轻举证负担的详细技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verified peephole optimizations for CompCert
Transformations over assembly code are common in many compilers. These transformations are also some of the most bug-dense compiler components. Such bugs could be elim- inated by formally verifying the compiler, but state-of-the- art formally verified compilers like CompCert do not sup- port assembly-level program transformations. This paper presents Peek, a framework for expressing, verifying, and running meaning-preserving assembly-level program trans- formations in CompCert. Peek contributes four new com- ponents: a lower level semantics for CompCert x86 syntax, a liveness analysis, a library for expressing and verifying peephole optimizations, and a verified peephole optimiza- tion pass built into CompCert. Each of these is accompanied by a correctness proof in Coq against realistic assumptions about the calling convention and the system memory alloca- tor. Verifying peephole optimizations in Peek requires prov- ing only a set of local properties, which we have proved are sufficient to ensure global transformation correctness. We have proven these local properties for 28 peephole transfor- mations from the literature. We discuss the development of our new assembly semantics, liveness analysis, representa- tion of program transformations, and execution engine; de- scribe the verification challenges of each component; and detail techniques we applied to mitigate the proof burden.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing the limits of program-specific garbage collection performance Data-driven precondition inference with learned features SDNRacer: concurrency analysis for software-defined networks Exposing errors related to weak memory in GPU applications Effective padding of multidimensional arrays to avoid cache conflict misses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1