使用异常检测器设计分布外数据检测:单一模型vs.集成

Dejana Ugrenovic, J. Vankeirsbilck, D. Pissoort, T. Holvoet, J. Boydens
{"title":"使用异常检测器设计分布外数据检测:单一模型vs.集成","authors":"Dejana Ugrenovic, J. Vankeirsbilck, D. Pissoort, T. Holvoet, J. Boydens","doi":"10.1109/ET50336.2020.9238227","DOIUrl":null,"url":null,"abstract":"Image classification neural networks tend to give high probabilities to images they in fact do not recognize. This paper compares three approaches to detect such out-of-distribution data: One-Class Support Vector Machine, Isolation Forest and Local Outlier Factor. The experiments show that Isolation Forest outperforms the other two approaches. However, when combining the three algorithms using a majority voter, the results show that this ensemble is better at detecting out-of-distribution data than using the Isolation Forest algorithm solely.","PeriodicalId":178356,"journal":{"name":"2020 XXIX International Scientific Conference Electronics (ET)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Designing Out-of-distribution Data Detection using Anomaly Detectors: Single Model vs. Ensemble\",\"authors\":\"Dejana Ugrenovic, J. Vankeirsbilck, D. Pissoort, T. Holvoet, J. Boydens\",\"doi\":\"10.1109/ET50336.2020.9238227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image classification neural networks tend to give high probabilities to images they in fact do not recognize. This paper compares three approaches to detect such out-of-distribution data: One-Class Support Vector Machine, Isolation Forest and Local Outlier Factor. The experiments show that Isolation Forest outperforms the other two approaches. However, when combining the three algorithms using a majority voter, the results show that this ensemble is better at detecting out-of-distribution data than using the Isolation Forest algorithm solely.\",\"PeriodicalId\":178356,\"journal\":{\"name\":\"2020 XXIX International Scientific Conference Electronics (ET)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 XXIX International Scientific Conference Electronics (ET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ET50336.2020.9238227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XXIX International Scientific Conference Electronics (ET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ET50336.2020.9238227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

图像分类神经网络倾向于对它们实际上无法识别的图像给出高概率。本文比较了一类支持向量机、隔离森林和局部离群因子三种检测离群数据的方法。实验结果表明,隔离森林算法优于其他两种算法。然而,当使用多数投票人将这三种算法组合在一起时,结果表明,这种集成在检测分布外数据方面比单独使用隔离森林算法更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing Out-of-distribution Data Detection using Anomaly Detectors: Single Model vs. Ensemble
Image classification neural networks tend to give high probabilities to images they in fact do not recognize. This paper compares three approaches to detect such out-of-distribution data: One-Class Support Vector Machine, Isolation Forest and Local Outlier Factor. The experiments show that Isolation Forest outperforms the other two approaches. However, when combining the three algorithms using a majority voter, the results show that this ensemble is better at detecting out-of-distribution data than using the Isolation Forest algorithm solely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Develop Test and Implementation of Low Cost DC Power Data Logger Apply of Design Patterns and Encryption Algorithms in Information Systems Arduino based Open Source Electronic Control Unit for Electric Utility Vehicles Copper Nanowires Filler to Fluxes for Fabrication of Diffusion Soldering Paste [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1