基于时空分析和编解码器网络的交通流量预测

Genxuan Hong, Zhanquan Wang, Fuchen Gao, Hengming Ji
{"title":"基于时空分析和编解码器网络的交通流量预测","authors":"Genxuan Hong, Zhanquan Wang, Fuchen Gao, Hengming Ji","doi":"10.1145/3457682.3457726","DOIUrl":null,"url":null,"abstract":"Intelligent transportation is an important part of a smart city. Due to the traffic flow sequence has characteristics of periodicity, nonlinearity and easily affected by external factors, improving the accuracy of traffic flow prediction in traffic hub network is important research content of intelligent transportation. For traffic flow prediction problem, an end-to-end framework called DeepTFP is proposed. Specifically, extracting spatiotemporal characteristics of traffic flow data as input of the model through spatiotemporal analysis. Then, a cross-entropy loss function based on error updating for the encoder-decoder network is designed to generate traffic flow predictions, encoder using Bi-direction long-short term memory(BiLSTM), decoder using long-short term memory(LSTM). We conducted extensive experiments on real datasets. The experiment results show that DeepTFP outperforms the other traffic flow prediction methods in terms of prediction error.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traffic Flow Prediction Using Spatiotemporal Analysis and Encoder-Decoder Network\",\"authors\":\"Genxuan Hong, Zhanquan Wang, Fuchen Gao, Hengming Ji\",\"doi\":\"10.1145/3457682.3457726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent transportation is an important part of a smart city. Due to the traffic flow sequence has characteristics of periodicity, nonlinearity and easily affected by external factors, improving the accuracy of traffic flow prediction in traffic hub network is important research content of intelligent transportation. For traffic flow prediction problem, an end-to-end framework called DeepTFP is proposed. Specifically, extracting spatiotemporal characteristics of traffic flow data as input of the model through spatiotemporal analysis. Then, a cross-entropy loss function based on error updating for the encoder-decoder network is designed to generate traffic flow predictions, encoder using Bi-direction long-short term memory(BiLSTM), decoder using long-short term memory(LSTM). We conducted extensive experiments on real datasets. The experiment results show that DeepTFP outperforms the other traffic flow prediction methods in terms of prediction error.\",\"PeriodicalId\":142045,\"journal\":{\"name\":\"2021 13th International Conference on Machine Learning and Computing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457682.3457726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智能交通是智慧城市的重要组成部分。由于交通流序列具有周期性、非线性和易受外界因素影响的特点,提高交通枢纽网络中交通流预测的准确性是智能交通的重要研究内容。针对交通流预测问题,提出了一种端到端深度tfp框架。具体而言,通过时空分析提取交通流数据的时空特征作为模型的输入。然后,设计了基于误差更新的编码器-解码器网络的交叉熵损失函数来生成交通流量预测,编码器使用双向长短期记忆(BiLSTM),解码器使用长短期记忆(LSTM)。我们在真实的数据集上进行了大量的实验。实验结果表明,DeepTFP在预测误差方面优于其他交通流预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Traffic Flow Prediction Using Spatiotemporal Analysis and Encoder-Decoder Network
Intelligent transportation is an important part of a smart city. Due to the traffic flow sequence has characteristics of periodicity, nonlinearity and easily affected by external factors, improving the accuracy of traffic flow prediction in traffic hub network is important research content of intelligent transportation. For traffic flow prediction problem, an end-to-end framework called DeepTFP is proposed. Specifically, extracting spatiotemporal characteristics of traffic flow data as input of the model through spatiotemporal analysis. Then, a cross-entropy loss function based on error updating for the encoder-decoder network is designed to generate traffic flow predictions, encoder using Bi-direction long-short term memory(BiLSTM), decoder using long-short term memory(LSTM). We conducted extensive experiments on real datasets. The experiment results show that DeepTFP outperforms the other traffic flow prediction methods in terms of prediction error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corpus Construction and Entity Recognition for the Field of Industrial Robot Fault Diagnosis GCN2-NAA: Two-stage Graph Convolutional Networks with Node-Aware Attention for Joint Entity and Relation Extraction A Practical Indoor and Outdoor Seamless Navigation System Based on Electronic Map and Geomagnetism SC-DGCN: Sentiment Classification Based on Densely Connected Graph Convolutional Network Bird Songs Recognition Based on Ensemble Extreme Learning Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1