利用平行时域有限差分法估计5G频段室内传播的人体阴影

Kazuki Yoshida, T. Hikage, Manebu Omiya
{"title":"利用平行时域有限差分法估计5G频段室内传播的人体阴影","authors":"Kazuki Yoshida, T. Hikage, Manebu Omiya","doi":"10.1109/iWEM52897.2022.9992300","DOIUrl":null,"url":null,"abstract":"This study focuses on the human body shadowing the propagation characteristics of local-5G frequency bands in indoor environments. We modeled an indoor propagation environment assuming a conference room containing human bodies and evaluated the propagation characteristics through a large-scale 3D numerical analysis based on the FDTD method. The electric field distribution in the conference room environment excited by the 4.7GHz transmitting antenna, which is used as the local-5G frequency, was calculated, and the propagation characteristics with and without the human bodies were compared. Shadowing and scattering effects due to multiple human bodies in standing and sitting postures were evaluated in the simulations.","PeriodicalId":433151,"journal":{"name":"2022 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of Human Body Shadowing for Indoor Propagation in the 5G Frequency Band Using Parallel FDTD Analysis\",\"authors\":\"Kazuki Yoshida, T. Hikage, Manebu Omiya\",\"doi\":\"10.1109/iWEM52897.2022.9992300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the human body shadowing the propagation characteristics of local-5G frequency bands in indoor environments. We modeled an indoor propagation environment assuming a conference room containing human bodies and evaluated the propagation characteristics through a large-scale 3D numerical analysis based on the FDTD method. The electric field distribution in the conference room environment excited by the 4.7GHz transmitting antenna, which is used as the local-5G frequency, was calculated, and the propagation characteristics with and without the human bodies were compared. Shadowing and scattering effects due to multiple human bodies in standing and sitting postures were evaluated in the simulations.\",\"PeriodicalId\":433151,\"journal\":{\"name\":\"2022 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iWEM52897.2022.9992300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iWEM52897.2022.9992300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究主要研究室内环境下本地5g频段的人体阴影传播特性。本文模拟了室内的传播环境,并基于时域有限差分法对传播特性进行了大规模的三维数值分析。计算了采用局域5g频率的4.7GHz发射天线激发下会议室环境的电场分布,比较了有和无人体时的传播特性。在模拟中评估了多人站姿和坐姿的阴影和散射效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Human Body Shadowing for Indoor Propagation in the 5G Frequency Band Using Parallel FDTD Analysis
This study focuses on the human body shadowing the propagation characteristics of local-5G frequency bands in indoor environments. We modeled an indoor propagation environment assuming a conference room containing human bodies and evaluated the propagation characteristics through a large-scale 3D numerical analysis based on the FDTD method. The electric field distribution in the conference room environment excited by the 4.7GHz transmitting antenna, which is used as the local-5G frequency, was calculated, and the propagation characteristics with and without the human bodies were compared. Shadowing and scattering effects due to multiple human bodies in standing and sitting postures were evaluated in the simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis Results of Single-Layered Reflectarray Antenna with Split Rectangular Loop Elements Very-Low-Profile, Dual-Polarized Oblong Loop Estimation Accuracy of an AOA Antenna in Rice Propagation Environment Using OTA Apparatus Probe-fed Wideband Planar Phased Array Antenna Element Using Stacked Rectangular and U-slot Patches in Low Vertical Profile 28 GHz 6-sector dual-polarized antenna for indoor base station
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1