{"title":"三层扩散双层聚合物纳米结构的电沉积:液/液界面以外的聚合","authors":"V. Divya, M. Sangaranarayanan","doi":"10.1515/eetech-2018-0002","DOIUrl":null,"url":null,"abstract":"Abstract Nanostructured conducting polymers have received immense attention during the past few decades on account of their phenomenal usefulness in diverse contexts, while the interface between two immiscible liquids is of great interest in chemical and biological applications. Here we propose a novel Electrode(solid)/Electrolyte(aqueous)/Electrolyte(organic) Interfacial assembly for the synthesis of polymeric nanostructures using a novel concept of three diffuse double layers. There exist remarkable differences between the morphologies of the polymers synthesized using the conventional electrode/electrolyte method and that of the new approach. In contrast to the commonly employed electrodeposition at liquid/liquid interfaces, these polymer modified electrodes can be directly employed in diverse applications such as sensors, supercapacitors etc.","PeriodicalId":443383,"journal":{"name":"Electrochemical Energy Technology","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrodeposition of Polymer Nanostructures using Three Diffuse Double Layers: Polymerization beyond the Liquid/Liquid Interfaces\",\"authors\":\"V. Divya, M. Sangaranarayanan\",\"doi\":\"10.1515/eetech-2018-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Nanostructured conducting polymers have received immense attention during the past few decades on account of their phenomenal usefulness in diverse contexts, while the interface between two immiscible liquids is of great interest in chemical and biological applications. Here we propose a novel Electrode(solid)/Electrolyte(aqueous)/Electrolyte(organic) Interfacial assembly for the synthesis of polymeric nanostructures using a novel concept of three diffuse double layers. There exist remarkable differences between the morphologies of the polymers synthesized using the conventional electrode/electrolyte method and that of the new approach. In contrast to the commonly employed electrodeposition at liquid/liquid interfaces, these polymer modified electrodes can be directly employed in diverse applications such as sensors, supercapacitors etc.\",\"PeriodicalId\":443383,\"journal\":{\"name\":\"Electrochemical Energy Technology\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemical Energy Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/eetech-2018-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemical Energy Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/eetech-2018-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrodeposition of Polymer Nanostructures using Three Diffuse Double Layers: Polymerization beyond the Liquid/Liquid Interfaces
Abstract Nanostructured conducting polymers have received immense attention during the past few decades on account of their phenomenal usefulness in diverse contexts, while the interface between two immiscible liquids is of great interest in chemical and biological applications. Here we propose a novel Electrode(solid)/Electrolyte(aqueous)/Electrolyte(organic) Interfacial assembly for the synthesis of polymeric nanostructures using a novel concept of three diffuse double layers. There exist remarkable differences between the morphologies of the polymers synthesized using the conventional electrode/electrolyte method and that of the new approach. In contrast to the commonly employed electrodeposition at liquid/liquid interfaces, these polymer modified electrodes can be directly employed in diverse applications such as sensors, supercapacitors etc.