{"title":"土壤接种抗镉放线菌群降低水稻镉积累","authors":"Shengping Xue, Xiaohuan Wang","doi":"10.11159/rtese20.132","DOIUrl":null,"url":null,"abstract":"- The microorganism and other amendments were immobilized in pellet carrier as microbial reverse screening model and were applied to the simulated Cd contaminated soil. Microbial flora (Streptomycete XW8, Actinomycetes XW3, ActinomycetesXW5) reduces Cd accumulation in rice when combined with biochar, humic acid and Carbon silicon functional liquid fertilizer. Microbial flora (Bacteria XW6, Actinomycetes XW3, Actinomycetes XW5) has highest TF and raises the bioavailability of Cd in soil. But Bacteria XW6 activate Cd in soil, which is a premium candidate for application in phytoremediation Cd farmland contamination. The compatibility of microbial flora had a significant effect in Cd reduction.","PeriodicalId":445341,"journal":{"name":"International Journal of Environmental Pollution and Remediation","volume":"137 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inoculation Of Soil With Cadmium-Resistant Actinomycetes Flora Reduces Cadmium Accumulation In Rice (Oryza Sativa L.)\",\"authors\":\"Shengping Xue, Xiaohuan Wang\",\"doi\":\"10.11159/rtese20.132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- The microorganism and other amendments were immobilized in pellet carrier as microbial reverse screening model and were applied to the simulated Cd contaminated soil. Microbial flora (Streptomycete XW8, Actinomycetes XW3, ActinomycetesXW5) reduces Cd accumulation in rice when combined with biochar, humic acid and Carbon silicon functional liquid fertilizer. Microbial flora (Bacteria XW6, Actinomycetes XW3, Actinomycetes XW5) has highest TF and raises the bioavailability of Cd in soil. But Bacteria XW6 activate Cd in soil, which is a premium candidate for application in phytoremediation Cd farmland contamination. The compatibility of microbial flora had a significant effect in Cd reduction.\",\"PeriodicalId\":445341,\"journal\":{\"name\":\"International Journal of Environmental Pollution and Remediation\",\"volume\":\"137 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Pollution and Remediation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11159/rtese20.132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Pollution and Remediation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/rtese20.132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inoculation Of Soil With Cadmium-Resistant Actinomycetes Flora Reduces Cadmium Accumulation In Rice (Oryza Sativa L.)
- The microorganism and other amendments were immobilized in pellet carrier as microbial reverse screening model and were applied to the simulated Cd contaminated soil. Microbial flora (Streptomycete XW8, Actinomycetes XW3, ActinomycetesXW5) reduces Cd accumulation in rice when combined with biochar, humic acid and Carbon silicon functional liquid fertilizer. Microbial flora (Bacteria XW6, Actinomycetes XW3, Actinomycetes XW5) has highest TF and raises the bioavailability of Cd in soil. But Bacteria XW6 activate Cd in soil, which is a premium candidate for application in phytoremediation Cd farmland contamination. The compatibility of microbial flora had a significant effect in Cd reduction.