基于数据选择的合成立体随机映射鲁棒语音识别

Jun Du, Qiang Huo
{"title":"基于数据选择的合成立体随机映射鲁棒语音识别","authors":"Jun Du, Qiang Huo","doi":"10.1109/ISCSLP.2012.6423542","DOIUrl":null,"url":null,"abstract":"In this paper, we present a synthesized stereo-based stochastic mapping approach for robust speech recognition. We extend the traditional stereo-based stochastic mapping (SSM) in two main aspects. First, the constraint of stereo-data, which is not practical in real applications, is relaxed by using HMM-based speech synthesis. Then we make feature mapping more focused on those incorrectly recognized samples via a data selection strategy. Experimental results on Aurora3 databases show that our approach can achieve consistently significant improvements of recognition performance in the well-matched (WM) condition among four different European languages.","PeriodicalId":186099,"journal":{"name":"2012 8th International Symposium on Chinese Spoken Language Processing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Synthesized stereo-based stochastic mapping with data selection for robust speech recognition\",\"authors\":\"Jun Du, Qiang Huo\",\"doi\":\"10.1109/ISCSLP.2012.6423542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a synthesized stereo-based stochastic mapping approach for robust speech recognition. We extend the traditional stereo-based stochastic mapping (SSM) in two main aspects. First, the constraint of stereo-data, which is not practical in real applications, is relaxed by using HMM-based speech synthesis. Then we make feature mapping more focused on those incorrectly recognized samples via a data selection strategy. Experimental results on Aurora3 databases show that our approach can achieve consistently significant improvements of recognition performance in the well-matched (WM) condition among four different European languages.\",\"PeriodicalId\":186099,\"journal\":{\"name\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSLP.2012.6423542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP.2012.6423542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们提出了一种基于合成立体随机映射的鲁棒语音识别方法。本文主要从两个方面对传统的基于立体的随机映射(SSM)进行了扩展。首先,利用基于hmm的语音合成技术,解决了在实际应用中难以实现的立体数据约束问题;然后,我们通过数据选择策略使特征映射更加集中在那些识别错误的样本上。在Aurora3数据库上的实验结果表明,我们的方法在四种不同的欧洲语言之间的良好匹配(WM)条件下,可以取得一致的显著的识别性能提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesized stereo-based stochastic mapping with data selection for robust speech recognition
In this paper, we present a synthesized stereo-based stochastic mapping approach for robust speech recognition. We extend the traditional stereo-based stochastic mapping (SSM) in two main aspects. First, the constraint of stereo-data, which is not practical in real applications, is relaxed by using HMM-based speech synthesis. Then we make feature mapping more focused on those incorrectly recognized samples via a data selection strategy. Experimental results on Aurora3 databases show that our approach can achieve consistently significant improvements of recognition performance in the well-matched (WM) condition among four different European languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise-robust whispered speech recognition using a non-audible-murmur microphone with VTS compensation Effects of excitation spread on the intelligibility of Mandarin speech in cochlear implant simulations A comparative study of fMPE and RDLT approaches to LVCSR Keyword-specific normalization based keyword spotting for spontaneous speech A unified trajectory tiling approach to high quality TTS and cross-lingual voice transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1