基于cbr的航空维修文本NLP决策支持系统

Syed Meesam Raza Naqvi, Mohammad Ghufran, Safa Meraghni, C. Varnier, J. Nicod, N. Zerhouni
{"title":"基于cbr的航空维修文本NLP决策支持系统","authors":"Syed Meesam Raza Naqvi, Mohammad Ghufran, Safa Meraghni, C. Varnier, J. Nicod, N. Zerhouni","doi":"10.1109/PHM2022-London52454.2022.00067","DOIUrl":null,"url":null,"abstract":"Recently, Prognostics and Health Management (PHM) has emerged to promote predictive maintenance as a methodological key to overcome the limitations of traditional reliability analysis. The Natural Language Processing (NLP) methods allow the maintenance log usage for maintenance diagnostics and decision making. The Maintenance Work Orders (MWOs) contain vital health indicators and decades of experience related to various maintenance actions. However, due to the unstructured nature of maintenance text, it is not common to develop a tool using these textual maintenance entries. This paper proposes a textual Case-Based Reasoning (CBR) approach combined with Technical Language Processing (TLP) to find solutions for new problems based on previous experiences. The Bidirectional Encoder Representations from Transformers (BERT) model is adopted for maintenance data using unsupervised finetuning technique Transformer-based Sequential Denoising AutoEncoder (TSDAE) for aviation case study. Results show that the pre-trained BERT model can adopt domain-specific data and produce semantic matches with only a small amount (1000 samples) of domain specific data.","PeriodicalId":269605,"journal":{"name":"2022 Prognostics and Health Management Conference (PHM-2022 London)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"CBR-Based Decision Support System for Maintenance Text Using NLP for an Aviation Case Study\",\"authors\":\"Syed Meesam Raza Naqvi, Mohammad Ghufran, Safa Meraghni, C. Varnier, J. Nicod, N. Zerhouni\",\"doi\":\"10.1109/PHM2022-London52454.2022.00067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Prognostics and Health Management (PHM) has emerged to promote predictive maintenance as a methodological key to overcome the limitations of traditional reliability analysis. The Natural Language Processing (NLP) methods allow the maintenance log usage for maintenance diagnostics and decision making. The Maintenance Work Orders (MWOs) contain vital health indicators and decades of experience related to various maintenance actions. However, due to the unstructured nature of maintenance text, it is not common to develop a tool using these textual maintenance entries. This paper proposes a textual Case-Based Reasoning (CBR) approach combined with Technical Language Processing (TLP) to find solutions for new problems based on previous experiences. The Bidirectional Encoder Representations from Transformers (BERT) model is adopted for maintenance data using unsupervised finetuning technique Transformer-based Sequential Denoising AutoEncoder (TSDAE) for aviation case study. Results show that the pre-trained BERT model can adopt domain-specific data and produce semantic matches with only a small amount (1000 samples) of domain specific data.\",\"PeriodicalId\":269605,\"journal\":{\"name\":\"2022 Prognostics and Health Management Conference (PHM-2022 London)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Prognostics and Health Management Conference (PHM-2022 London)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PHM2022-London52454.2022.00067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Prognostics and Health Management Conference (PHM-2022 London)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM2022-London52454.2022.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

最近,预后和健康管理(PHM)的出现促进了预测性维护,将其作为克服传统可靠性分析局限性的方法关键。自然语言处理(NLP)方法允许将维护日志用于维护诊断和决策。维修工作单(MWOs)包含重要的健康指标和与各种维修行动相关的数十年经验。然而,由于维护文本的非结构化性质,开发使用这些文本维护条目的工具并不常见。本文提出了一种基于文本案例推理(CBR)和技术语言处理(TLP)相结合的方法,在已有经验的基础上寻找新问题的解决方案。采用基于变压器的顺序去噪自动编码器(TSDAE)对航空维修数据进行无监督微调,采用双向编码器表示(BERT)模型。结果表明,预训练的BERT模型可以采用特定领域的数据,并且只需要少量(1000个样本)的特定领域数据就能产生语义匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CBR-Based Decision Support System for Maintenance Text Using NLP for an Aviation Case Study
Recently, Prognostics and Health Management (PHM) has emerged to promote predictive maintenance as a methodological key to overcome the limitations of traditional reliability analysis. The Natural Language Processing (NLP) methods allow the maintenance log usage for maintenance diagnostics and decision making. The Maintenance Work Orders (MWOs) contain vital health indicators and decades of experience related to various maintenance actions. However, due to the unstructured nature of maintenance text, it is not common to develop a tool using these textual maintenance entries. This paper proposes a textual Case-Based Reasoning (CBR) approach combined with Technical Language Processing (TLP) to find solutions for new problems based on previous experiences. The Bidirectional Encoder Representations from Transformers (BERT) model is adopted for maintenance data using unsupervised finetuning technique Transformer-based Sequential Denoising AutoEncoder (TSDAE) for aviation case study. Results show that the pre-trained BERT model can adopt domain-specific data and produce semantic matches with only a small amount (1000 samples) of domain specific data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Defending Against Adversarial Attacks on Time- series with Selective Classification Fault diagnosis of fire control system based on genetic algorithm optimized BP neural network Monitoring and Mitigating Ionosphere threats in GNSS Space Environment Science A Relation Prediction Method for Industrial Knowledge Graph with Complex Relations Condition Monitoring of Wind Turbine Main Bearing Using SCADA Data and Informed by the Principle of Energy Conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1