稳定次氯酸消毒高度脆弱人群:Brio HOCL™伤口消毒和区域去污

Eric D. Rasmussen, Jeffrey F. Williams
{"title":"稳定次氯酸消毒高度脆弱人群:Brio HOCL™伤口消毒和区域去污","authors":"Eric D. Rasmussen, Jeffrey F. Williams","doi":"10.1109/GHTC.2017.8239259","DOIUrl":null,"url":null,"abstract":"The advent of old diseases in new places, of newly-emerging infectious diseases not seen before, and of highly resistant organisms, has complicated disaster response and the management of displaced populations. One method for addressing that developing risk is to attack pathogens before they become life-threatening infections using area and wound decontamination and disinfection techniques. Current methods for disinfection, however, can contribute to the development of resistance, prove toxic to tissues, and damage the environment. We review here an emerging technology based on hypochlorous acid (HOCl), with emphasis on a novel pure and stable form (Brio HOCL™), that inactivates viruses, bacteria, endospores, and fungi, is safe for human tissues (including eye, lung, and skin), is environmentally benign requiring no toxic waste disposal or hazardous material management, and yet is capable of degrading the infectivity of highly-resistant prions at a Log Reduction Value (LRV) of >5, equating to roughly a 99.999% elimination.","PeriodicalId":248924,"journal":{"name":"2017 IEEE Global Humanitarian Technology Conference (GHTC)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Stabilized hypochlorous acid disinfection for highly vulnerable populations: Brio HOCL™ wound disinfection and area decontamination\",\"authors\":\"Eric D. Rasmussen, Jeffrey F. Williams\",\"doi\":\"10.1109/GHTC.2017.8239259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advent of old diseases in new places, of newly-emerging infectious diseases not seen before, and of highly resistant organisms, has complicated disaster response and the management of displaced populations. One method for addressing that developing risk is to attack pathogens before they become life-threatening infections using area and wound decontamination and disinfection techniques. Current methods for disinfection, however, can contribute to the development of resistance, prove toxic to tissues, and damage the environment. We review here an emerging technology based on hypochlorous acid (HOCl), with emphasis on a novel pure and stable form (Brio HOCL™), that inactivates viruses, bacteria, endospores, and fungi, is safe for human tissues (including eye, lung, and skin), is environmentally benign requiring no toxic waste disposal or hazardous material management, and yet is capable of degrading the infectivity of highly-resistant prions at a Log Reduction Value (LRV) of >5, equating to roughly a 99.999% elimination.\",\"PeriodicalId\":248924,\"journal\":{\"name\":\"2017 IEEE Global Humanitarian Technology Conference (GHTC)\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Global Humanitarian Technology Conference (GHTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GHTC.2017.8239259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Global Humanitarian Technology Conference (GHTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GHTC.2017.8239259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

旧的疾病在新的地方出现,以前没有见过的新出现的传染病,以及高度耐药的生物体,使灾害反应和流离失所人口的管理变得复杂。应对这种风险的一种方法是,在病原体成为危及生命的感染之前,利用区域和伤口去污和消毒技术对其进行攻击。然而,目前的消毒方法可能会导致耐药性的产生,对组织有毒,并破坏环境。我们在此回顾了一项基于次氯酸(HOCl)的新兴技术,重点介绍了一种新的纯净稳定的形式(Brio HOCl™),它能灭活病毒、细菌、内生孢子和真菌,对人体组织(包括眼睛、肺和皮肤)是安全的,对环境无害,不需要有毒废物处理或有害物质管理,并且能够在对数还原值(LRV) >5时降低高耐药性朊病毒的传染性,相当于大约99.999%的消除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stabilized hypochlorous acid disinfection for highly vulnerable populations: Brio HOCL™ wound disinfection and area decontamination
The advent of old diseases in new places, of newly-emerging infectious diseases not seen before, and of highly resistant organisms, has complicated disaster response and the management of displaced populations. One method for addressing that developing risk is to attack pathogens before they become life-threatening infections using area and wound decontamination and disinfection techniques. Current methods for disinfection, however, can contribute to the development of resistance, prove toxic to tissues, and damage the environment. We review here an emerging technology based on hypochlorous acid (HOCl), with emphasis on a novel pure and stable form (Brio HOCL™), that inactivates viruses, bacteria, endospores, and fungi, is safe for human tissues (including eye, lung, and skin), is environmentally benign requiring no toxic waste disposal or hazardous material management, and yet is capable of degrading the infectivity of highly-resistant prions at a Log Reduction Value (LRV) of >5, equating to roughly a 99.999% elimination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tablet app for child cognitive assessment in low and middle income countries Analyzing sub-optimal rural microgrids and methods for improving the system capacity and demand factors: Filibaba microgrid case study examined A global market assessment methodology for small wind in the developing world Using smart power management control to maximize energy utilization and reliability within a microgrid of interconnected solar home systems Use of cough sounds for diagnosis and screening of pulmonary disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1