微型传感器在微型燃料电池诊断中的应用

Chi-Yuan Lee, Shuo-Jen Lee, C. Hsieh
{"title":"微型传感器在微型燃料电池诊断中的应用","authors":"Chi-Yuan Lee, Shuo-Jen Lee, C. Hsieh","doi":"10.1109/NEMS.2007.352053","DOIUrl":null,"url":null,"abstract":"The fuel cell has the potential to become an indispensable source of electric power. However, some problems have not yet been resolved. Measuring the temperature and humidity inside the fuel cells is currently difficult. Accordingly, in this study, array micro sensors are fabricated within the fuel cell, in which the temperature and humidity distributions are measured. The substrate of the bipolar plate of the fuel cell was made of stainless steel (SS-304) and the wet etching was employed to fabricate the channel on the stainless steel substrate. Then microelectromechanical systems (MEMS) technology was used to fabricate the array micro temperature sensors and the micro humidity sensors on the rib of channel of stainless steel. The advantages of array micro temperature sensors are their small volume, their high accuracy, their short response time, the simplicity of their fabrication, their mass production and their ability to measure the temperature at a precise location more effectively than the traditional thermocouple. The micro humidity sensors are made from gold and titanium as down and up electrodes in the channel. The performance curves of the single cell operating at 41.54 degC and gas flow rates of H2/O2 at 200/200ml/min. The max power density of the bipolar without micro sensor is 142 mW/cm2 and the current density is 463 mA/cm2. The max power density of the bipolar with micro sensor is 56 mW/cm2.","PeriodicalId":364039,"journal":{"name":"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Micro Sensors on Diagnosis of Micro Fuel Cells\",\"authors\":\"Chi-Yuan Lee, Shuo-Jen Lee, C. Hsieh\",\"doi\":\"10.1109/NEMS.2007.352053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fuel cell has the potential to become an indispensable source of electric power. However, some problems have not yet been resolved. Measuring the temperature and humidity inside the fuel cells is currently difficult. Accordingly, in this study, array micro sensors are fabricated within the fuel cell, in which the temperature and humidity distributions are measured. The substrate of the bipolar plate of the fuel cell was made of stainless steel (SS-304) and the wet etching was employed to fabricate the channel on the stainless steel substrate. Then microelectromechanical systems (MEMS) technology was used to fabricate the array micro temperature sensors and the micro humidity sensors on the rib of channel of stainless steel. The advantages of array micro temperature sensors are their small volume, their high accuracy, their short response time, the simplicity of their fabrication, their mass production and their ability to measure the temperature at a precise location more effectively than the traditional thermocouple. The micro humidity sensors are made from gold and titanium as down and up electrodes in the channel. The performance curves of the single cell operating at 41.54 degC and gas flow rates of H2/O2 at 200/200ml/min. The max power density of the bipolar without micro sensor is 142 mW/cm2 and the current density is 463 mA/cm2. The max power density of the bipolar with micro sensor is 56 mW/cm2.\",\"PeriodicalId\":364039,\"journal\":{\"name\":\"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2007.352053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2007.352053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

燃料电池有可能成为一种不可或缺的电力来源。但是,有些问题还没有得到解决。测量燃料电池内部的温度和湿度目前是很困难的。因此,本研究在燃料电池内部制作阵列微传感器,测量其温度和湿度分布。燃料电池双极板的衬底为不锈钢(SS-304),采用湿法蚀刻在不锈钢衬底上制作通道。然后利用微机电系统(MEMS)技术在不锈钢通道肋上制作阵列微温度传感器和微湿度传感器。阵列微温度传感器的优点是体积小,精度高,响应时间短,制造简单,批量生产以及比传统热电偶更有效地在精确位置测量温度的能力。微湿度传感器由金和钛制成,作为通道中的上下电极。在41.54℃下,H2/O2气体流速为200/200ml/min时,单体电池的性能曲线。无微传感器双极极的最大功率密度为142 mW/cm2,电流密度为463 mA/cm2。微传感器双极极的最大功率密度为56 mW/cm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of Micro Sensors on Diagnosis of Micro Fuel Cells
The fuel cell has the potential to become an indispensable source of electric power. However, some problems have not yet been resolved. Measuring the temperature and humidity inside the fuel cells is currently difficult. Accordingly, in this study, array micro sensors are fabricated within the fuel cell, in which the temperature and humidity distributions are measured. The substrate of the bipolar plate of the fuel cell was made of stainless steel (SS-304) and the wet etching was employed to fabricate the channel on the stainless steel substrate. Then microelectromechanical systems (MEMS) technology was used to fabricate the array micro temperature sensors and the micro humidity sensors on the rib of channel of stainless steel. The advantages of array micro temperature sensors are their small volume, their high accuracy, their short response time, the simplicity of their fabrication, their mass production and their ability to measure the temperature at a precise location more effectively than the traditional thermocouple. The micro humidity sensors are made from gold and titanium as down and up electrodes in the channel. The performance curves of the single cell operating at 41.54 degC and gas flow rates of H2/O2 at 200/200ml/min. The max power density of the bipolar without micro sensor is 142 mW/cm2 and the current density is 463 mA/cm2. The max power density of the bipolar with micro sensor is 56 mW/cm2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conference Venue Information Design and Manufacture of Novel MEMS-based Dielectrophoretic Biochip Plenary Speech: Spin Excitation Spectroscopy with the STM Fluorescence Visualization of Carbon Nanotubes Using Quenching Effect for Nanomanipulation Polymer-Enabled Carbon Nanotube Deposition for Cellular Interrogation Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1