{"title":"Euler-Maruyama格式算子分裂及热核的高阶离散化","authors":"Yuga Iguchi, T. Yamada","doi":"10.2139/ssrn.3510133","DOIUrl":null,"url":null,"abstract":"This paper proposes a general higher order operator splitting scheme for diffusion semigroups using the Baker-Campbell-Hausdorff type commutator expansion of non-commutative algebra and the Malliavin calculus. An accurate discretization method for the fundamental solution of heat equations or the heat kernel is introduced with a new computational algorithm which will be useful for the inference for diffusion processes. The approximation is regarded as the splitting around the Euler-Maruyama scheme for the density. Numerical examples for diffusion processes are shown to validate the proposed scheme.","PeriodicalId":299310,"journal":{"name":"Econometrics: Mathematical Methods & Programming eJournal","volume":"223 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Operator Splitting Around Euler-Maruyama Scheme and High Order Discretization of Heat Kernels\",\"authors\":\"Yuga Iguchi, T. Yamada\",\"doi\":\"10.2139/ssrn.3510133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a general higher order operator splitting scheme for diffusion semigroups using the Baker-Campbell-Hausdorff type commutator expansion of non-commutative algebra and the Malliavin calculus. An accurate discretization method for the fundamental solution of heat equations or the heat kernel is introduced with a new computational algorithm which will be useful for the inference for diffusion processes. The approximation is regarded as the splitting around the Euler-Maruyama scheme for the density. Numerical examples for diffusion processes are shown to validate the proposed scheme.\",\"PeriodicalId\":299310,\"journal\":{\"name\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"volume\":\"223 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Mathematical Methods & Programming eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3510133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Mathematical Methods & Programming eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3510133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operator Splitting Around Euler-Maruyama Scheme and High Order Discretization of Heat Kernels
This paper proposes a general higher order operator splitting scheme for diffusion semigroups using the Baker-Campbell-Hausdorff type commutator expansion of non-commutative algebra and the Malliavin calculus. An accurate discretization method for the fundamental solution of heat equations or the heat kernel is introduced with a new computational algorithm which will be useful for the inference for diffusion processes. The approximation is regarded as the splitting around the Euler-Maruyama scheme for the density. Numerical examples for diffusion processes are shown to validate the proposed scheme.