低上行带宽下的高质量直播:一种基于超分辨率的视频编码方法

Ying Chen, Qing Li, Aoyang Zhang, Longhao Zou, Yong Jiang, Zhimin Xu, Junlin Li, Zhenhui Yuan
{"title":"低上行带宽下的高质量直播:一种基于超分辨率的视频编码方法","authors":"Ying Chen, Qing Li, Aoyang Zhang, Longhao Zou, Yong Jiang, Zhimin Xu, Junlin Li, Zhenhui Yuan","doi":"10.1145/3458306.3458874","DOIUrl":null,"url":null,"abstract":"With the growing popularity of live streaming, high video quality and low latency with limited uplink bandwidth have become a significant challenge. In this study, we propose Live Super-Resolution Based Video Coding (LiveSRVC), a novel video uploading framework that improves the quality of live streaming with low latency under limited uplink bandwidth. We design a new super-resolution-based key frame coding module to improve the coding compression efficiency. LiveSRVC dynamically selects the bitrate and the compression ratio of key frames, mitigating the influence of uplink bandwidth capacity on live streaming quality. Trace-driven emulations verify that LiveSRVC can provide the same quality while reducing up to 50% of the required bandwidth compared to the original encoding method (H.264). LiveSRVC consumes at least 10X less GPU occupation time compared to the method of reconstructing all frames with super-resolution.","PeriodicalId":429348,"journal":{"name":"Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Higher quality live streaming under lower uplink bandwidth: an approach of super-resolution based video coding\",\"authors\":\"Ying Chen, Qing Li, Aoyang Zhang, Longhao Zou, Yong Jiang, Zhimin Xu, Junlin Li, Zhenhui Yuan\",\"doi\":\"10.1145/3458306.3458874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing popularity of live streaming, high video quality and low latency with limited uplink bandwidth have become a significant challenge. In this study, we propose Live Super-Resolution Based Video Coding (LiveSRVC), a novel video uploading framework that improves the quality of live streaming with low latency under limited uplink bandwidth. We design a new super-resolution-based key frame coding module to improve the coding compression efficiency. LiveSRVC dynamically selects the bitrate and the compression ratio of key frames, mitigating the influence of uplink bandwidth capacity on live streaming quality. Trace-driven emulations verify that LiveSRVC can provide the same quality while reducing up to 50% of the required bandwidth compared to the original encoding method (H.264). LiveSRVC consumes at least 10X less GPU occupation time compared to the method of reconstructing all frames with super-resolution.\",\"PeriodicalId\":429348,\"journal\":{\"name\":\"Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3458306.3458874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM Workshop on Network and Operating Systems Support for Digital Audio and Video","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458306.3458874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随着网络直播的日益普及,在有限的上行带宽下实现高质量、低时延的视频传输已成为一项重大挑战。在本研究中,我们提出了一种基于实时超分辨率的视频编码(LiveSRVC),这是一种新颖的视频上传框架,可以在有限的上行带宽下以低延迟提高直播流的质量。为了提高编码压缩效率,设计了一种新的基于超分辨率的关键帧编码模块。LiveSRVC动态选择关键帧的比特率和压缩比,减轻了上行带宽容量对直播质量的影响。跟踪驱动的仿真验证了LiveSRVC可以提供相同的质量,同时与原始编码方法(H.264)相比,所需带宽减少了50%。与使用超分辨率重建所有帧的方法相比,LiveSRVC至少节省了10倍的GPU占用时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Higher quality live streaming under lower uplink bandwidth: an approach of super-resolution based video coding
With the growing popularity of live streaming, high video quality and low latency with limited uplink bandwidth have become a significant challenge. In this study, we propose Live Super-Resolution Based Video Coding (LiveSRVC), a novel video uploading framework that improves the quality of live streaming with low latency under limited uplink bandwidth. We design a new super-resolution-based key frame coding module to improve the coding compression efficiency. LiveSRVC dynamically selects the bitrate and the compression ratio of key frames, mitigating the influence of uplink bandwidth capacity on live streaming quality. Trace-driven emulations verify that LiveSRVC can provide the same quality while reducing up to 50% of the required bandwidth compared to the original encoding method (H.264). LiveSRVC consumes at least 10X less GPU occupation time compared to the method of reconstructing all frames with super-resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic 3D point cloud streaming: distortion and concealment Data diet pills: in-network video quality control system for traffic usage reduction Common media client data (CMCD): initial findings ES-HAS: an edge- and SDN-assisted framework for HTTP adaptive video streaming Multi-resolution quality-based video coding system for DASH scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1