{"title":"基于局部二值特征的高效机器学习跌倒检测算法","authors":"M. Saleh, R. Bouquin-Jeannès","doi":"10.23919/EUSIPCO.2018.8553340","DOIUrl":null,"url":null,"abstract":"According to the world health organization, millions of elderly suffer from falls every year. These falls are one of the major causes of death worldwide. As a rapid medical intervention would considerably decrease the serious consequences of such falls, automatic fall detection systems for elderly has become a necessity. In this paper, an efficient machine learning-based fall detection algorithm is proposed. Thanks to the proposed local binary features, this algorithm shows a high accuracy exceeding 99% when tested on a large dataset. In addition, it enjoys an attractive property that the computational cost of decision-making is independent from the complexity of the trained machine. Thus, the proposed algorithm overcomes a critical challenge of designing accurate yet low-cost solutions for wearable fall detectors. The aforementioned property enables implementing autonomous, low-power consumption wearable fall detectors.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Efficient Machine Learning-Based Fall Detection Algorithm using Local Binary Features\",\"authors\":\"M. Saleh, R. Bouquin-Jeannès\",\"doi\":\"10.23919/EUSIPCO.2018.8553340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the world health organization, millions of elderly suffer from falls every year. These falls are one of the major causes of death worldwide. As a rapid medical intervention would considerably decrease the serious consequences of such falls, automatic fall detection systems for elderly has become a necessity. In this paper, an efficient machine learning-based fall detection algorithm is proposed. Thanks to the proposed local binary features, this algorithm shows a high accuracy exceeding 99% when tested on a large dataset. In addition, it enjoys an attractive property that the computational cost of decision-making is independent from the complexity of the trained machine. Thus, the proposed algorithm overcomes a critical challenge of designing accurate yet low-cost solutions for wearable fall detectors. The aforementioned property enables implementing autonomous, low-power consumption wearable fall detectors.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Machine Learning-Based Fall Detection Algorithm using Local Binary Features
According to the world health organization, millions of elderly suffer from falls every year. These falls are one of the major causes of death worldwide. As a rapid medical intervention would considerably decrease the serious consequences of such falls, automatic fall detection systems for elderly has become a necessity. In this paper, an efficient machine learning-based fall detection algorithm is proposed. Thanks to the proposed local binary features, this algorithm shows a high accuracy exceeding 99% when tested on a large dataset. In addition, it enjoys an attractive property that the computational cost of decision-making is independent from the complexity of the trained machine. Thus, the proposed algorithm overcomes a critical challenge of designing accurate yet low-cost solutions for wearable fall detectors. The aforementioned property enables implementing autonomous, low-power consumption wearable fall detectors.