{"title":"基于蚁群优化的图像阈值分割","authors":"Alice R. Malisia, H. Tizhoosh","doi":"10.1109/CRV.2006.42","DOIUrl":null,"url":null,"abstract":"This study is an investigation of the application of ant colony optimization to image thresholding. This paper presents an approach where one ant is assigned to each pixel of an image and then moves around the image seeking low grayscale regions. Experimental results demonstrate that the proposed ant-based method performs better than other two established thresholding algorithms. Further work must be conducted to optimize the algorithm parameters, improve the analysis of the pheromone data and reduce computation time. However, the study indicates that an ant-based approach has the potential of becoming an established image thresholding technique.","PeriodicalId":369170,"journal":{"name":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Image Thresholding Using Ant Colony Optimization\",\"authors\":\"Alice R. Malisia, H. Tizhoosh\",\"doi\":\"10.1109/CRV.2006.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study is an investigation of the application of ant colony optimization to image thresholding. This paper presents an approach where one ant is assigned to each pixel of an image and then moves around the image seeking low grayscale regions. Experimental results demonstrate that the proposed ant-based method performs better than other two established thresholding algorithms. Further work must be conducted to optimize the algorithm parameters, improve the analysis of the pheromone data and reduce computation time. However, the study indicates that an ant-based approach has the potential of becoming an established image thresholding technique.\",\"PeriodicalId\":369170,\"journal\":{\"name\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2006.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2006.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This study is an investigation of the application of ant colony optimization to image thresholding. This paper presents an approach where one ant is assigned to each pixel of an image and then moves around the image seeking low grayscale regions. Experimental results demonstrate that the proposed ant-based method performs better than other two established thresholding algorithms. Further work must be conducted to optimize the algorithm parameters, improve the analysis of the pheromone data and reduce computation time. However, the study indicates that an ant-based approach has the potential of becoming an established image thresholding technique.