{"title":"基于基片集成波导技术的宽带功率分配器设计","authors":"Sohum Datta, S. Mukherjee, A. Biswas","doi":"10.1109/AEMC.2013.7045086","DOIUrl":null,"url":null,"abstract":"In this paper, design principles for implementation of broadband T-type and Y-type power divider based on Substrate-Integrated Waveguide (SIW) technology has been presented. Different design curves have been developed based on simulation results and are used to implement 1×2 power dividers of Y-type and T-type. Finally, by cascading T-type and Y-type stages a 1×4 Power divider of equal division is designed and simulated. The proposed design shows a broad bandwidth (-20 dB) of 18.3% and insertion-loss Bandwidth (1%) of 17.86%.","PeriodicalId":169237,"journal":{"name":"2013 IEEE Applied Electromagnetics Conference (AEMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Design of broadband power divider based on Substrate-Integrated Waveguide technology\",\"authors\":\"Sohum Datta, S. Mukherjee, A. Biswas\",\"doi\":\"10.1109/AEMC.2013.7045086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, design principles for implementation of broadband T-type and Y-type power divider based on Substrate-Integrated Waveguide (SIW) technology has been presented. Different design curves have been developed based on simulation results and are used to implement 1×2 power dividers of Y-type and T-type. Finally, by cascading T-type and Y-type stages a 1×4 Power divider of equal division is designed and simulated. The proposed design shows a broad bandwidth (-20 dB) of 18.3% and insertion-loss Bandwidth (1%) of 17.86%.\",\"PeriodicalId\":169237,\"journal\":{\"name\":\"2013 IEEE Applied Electromagnetics Conference (AEMC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Applied Electromagnetics Conference (AEMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEMC.2013.7045086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Applied Electromagnetics Conference (AEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEMC.2013.7045086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of broadband power divider based on Substrate-Integrated Waveguide technology
In this paper, design principles for implementation of broadband T-type and Y-type power divider based on Substrate-Integrated Waveguide (SIW) technology has been presented. Different design curves have been developed based on simulation results and are used to implement 1×2 power dividers of Y-type and T-type. Finally, by cascading T-type and Y-type stages a 1×4 Power divider of equal division is designed and simulated. The proposed design shows a broad bandwidth (-20 dB) of 18.3% and insertion-loss Bandwidth (1%) of 17.86%.