GhostNet改进YOLO检测急性淋巴细胞白血病的参数和计算资源

T. Mustaqim, C. Fatichah, N. Suciati
{"title":"GhostNet改进YOLO检测急性淋巴细胞白血病的参数和计算资源","authors":"T. Mustaqim, C. Fatichah, N. Suciati","doi":"10.1109/ICACSIS56558.2022.9923484","DOIUrl":null,"url":null,"abstract":"The Detection of acute lymphoblastic leukemia (ALL) subtypes on multicellular microscopic images is significant for early diagnosis to support the treatment process. Recently, the object detection with a deep learning approach shows good accuracy and fast computation time in the medical field. Therefore, we propose using the You Only Look Once (YOLO) method, namely the Yolov4 and Yolov5 models, to detect the L1, L2, and L3 subtypes. However, both models still have high GFLOPS values and high number of parameters. This paper proposes a modification of Yolov4 and Yolov5 by replacing the standard backbone convolution module with the GhostNet convolution module. The GhostNet module can reduce the GFLOPS value and the number of parameters. Overall., the Yolo backbone modification model has comparable results with the original Yolo model with a slight difference with a value of 1.4 % in the Yolov4 backbone modification model and 2.4 % in the Yolov5 backbone modification model. The number of parameters and GFLOPS values of the two models modified was reduced by 35% and 40%, respectively.","PeriodicalId":165728,"journal":{"name":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modification of YOLO with GhostNet to Reduce Parameters and Computing Resources for Detecting Acute Lymphoblastic Leukemia\",\"authors\":\"T. Mustaqim, C. Fatichah, N. Suciati\",\"doi\":\"10.1109/ICACSIS56558.2022.9923484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Detection of acute lymphoblastic leukemia (ALL) subtypes on multicellular microscopic images is significant for early diagnosis to support the treatment process. Recently, the object detection with a deep learning approach shows good accuracy and fast computation time in the medical field. Therefore, we propose using the You Only Look Once (YOLO) method, namely the Yolov4 and Yolov5 models, to detect the L1, L2, and L3 subtypes. However, both models still have high GFLOPS values and high number of parameters. This paper proposes a modification of Yolov4 and Yolov5 by replacing the standard backbone convolution module with the GhostNet convolution module. The GhostNet module can reduce the GFLOPS value and the number of parameters. Overall., the Yolo backbone modification model has comparable results with the original Yolo model with a slight difference with a value of 1.4 % in the Yolov4 backbone modification model and 2.4 % in the Yolov5 backbone modification model. The number of parameters and GFLOPS values of the two models modified was reduced by 35% and 40%, respectively.\",\"PeriodicalId\":165728,\"journal\":{\"name\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS56558.2022.9923484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS56558.2022.9923484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多细胞显微镜图像上检测急性淋巴细胞白血病(ALL)亚型对于早期诊断支持治疗过程具有重要意义。近年来,基于深度学习的目标检测方法在医学领域显示出良好的准确性和快速的计算时间。因此,我们建议使用You Only Look Once (YOLO)方法,即Yolov4和Yolov5模型来检测L1、L2和L3亚型。然而,这两种模型仍然具有高GFLOPS值和高参数数量。本文提出了对Yolov4和Yolov5的改进,将标准骨干卷积模块替换为GhostNet卷积模块。GhostNet模块可以减少GFLOPS的值和参数的数量。整体。, yolo4和yolo5改性模型的差异值分别为1.4%和2.4%,与原yolo4和yolo5改性模型的差异值基本相当。修正后的两种模型的参数个数和GFLOPS值分别减少了35%和40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modification of YOLO with GhostNet to Reduce Parameters and Computing Resources for Detecting Acute Lymphoblastic Leukemia
The Detection of acute lymphoblastic leukemia (ALL) subtypes on multicellular microscopic images is significant for early diagnosis to support the treatment process. Recently, the object detection with a deep learning approach shows good accuracy and fast computation time in the medical field. Therefore, we propose using the You Only Look Once (YOLO) method, namely the Yolov4 and Yolov5 models, to detect the L1, L2, and L3 subtypes. However, both models still have high GFLOPS values and high number of parameters. This paper proposes a modification of Yolov4 and Yolov5 by replacing the standard backbone convolution module with the GhostNet convolution module. The GhostNet module can reduce the GFLOPS value and the number of parameters. Overall., the Yolo backbone modification model has comparable results with the original Yolo model with a slight difference with a value of 1.4 % in the Yolov4 backbone modification model and 2.4 % in the Yolov5 backbone modification model. The number of parameters and GFLOPS values of the two models modified was reduced by 35% and 40%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determining An Optimal Airport Location For Country Capital Case Study: Capital Region Nusantara Clustered Bert Model for predicting Retweet Popularity Placement Analysis ofGCI Radar For Supporting Indonesia Air Defense Using Geographic Information System (Case Study: West Kalimantan) Improved Single Shot Detector with Enhanced Hard Negative Mining Approach Classification of Stroke and Non-Stroke Patients from Human Body Movements using Smartphone Videos and Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1