Wenyi Qian, Xin Peng, Jun Sun, Y. Yu, B. Nuseibeh, Wenyun Zhao
{"title":"O2O服务构成与社会协作","authors":"Wenyi Qian, Xin Peng, Jun Sun, Y. Yu, B. Nuseibeh, Wenyun Zhao","doi":"10.1109/ASE.2017.8115657","DOIUrl":null,"url":null,"abstract":"In Online-to-Offline (O2O) commerce, customer services may need to be composed from online and offline services. Such composition is challenging, as it requires effective selection of appropriate services that, in turn, support optimal combination of both online and offline services. In this paper, we address this challenge by proposing an approach to O2O service composition which combines offline route planning and social collaboration to optimize service selection. We frame general O2O service composition problems using timed automata and propose an optimization procedure that incorporates: (1) a Markov Chain Monte Carlo (MCMC) algorithm to stochastically select a concrete composite service, and (2) a model checking approach to searching for an optimal collaboration plan with the lowest cost given certain time constraint. Our procedure has been evaluated using the simulation of a rich scenario on effectiveness and scalability.","PeriodicalId":382876,"journal":{"name":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","volume":"51 50","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"O2O service composition with social collaboration\",\"authors\":\"Wenyi Qian, Xin Peng, Jun Sun, Y. Yu, B. Nuseibeh, Wenyun Zhao\",\"doi\":\"10.1109/ASE.2017.8115657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Online-to-Offline (O2O) commerce, customer services may need to be composed from online and offline services. Such composition is challenging, as it requires effective selection of appropriate services that, in turn, support optimal combination of both online and offline services. In this paper, we address this challenge by proposing an approach to O2O service composition which combines offline route planning and social collaboration to optimize service selection. We frame general O2O service composition problems using timed automata and propose an optimization procedure that incorporates: (1) a Markov Chain Monte Carlo (MCMC) algorithm to stochastically select a concrete composite service, and (2) a model checking approach to searching for an optimal collaboration plan with the lowest cost given certain time constraint. Our procedure has been evaluated using the simulation of a rich scenario on effectiveness and scalability.\",\"PeriodicalId\":382876,\"journal\":{\"name\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"volume\":\"51 50\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASE.2017.8115657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASE.2017.8115657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In Online-to-Offline (O2O) commerce, customer services may need to be composed from online and offline services. Such composition is challenging, as it requires effective selection of appropriate services that, in turn, support optimal combination of both online and offline services. In this paper, we address this challenge by proposing an approach to O2O service composition which combines offline route planning and social collaboration to optimize service selection. We frame general O2O service composition problems using timed automata and propose an optimization procedure that incorporates: (1) a Markov Chain Monte Carlo (MCMC) algorithm to stochastically select a concrete composite service, and (2) a model checking approach to searching for an optimal collaboration plan with the lowest cost given certain time constraint. Our procedure has been evaluated using the simulation of a rich scenario on effectiveness and scalability.