纳米等离子体腔和超材料中的强耦合(会议报告)

O. Hess
{"title":"纳米等离子体腔和超材料中的强耦合(会议报告)","authors":"O. Hess","doi":"10.1117/12.2322579","DOIUrl":null,"url":null,"abstract":"Nanoplasmonic (meta-)materials and nanophotonics have the unique ability to confine light in extremely sub-wavelength volumes and thereby strongly enhance the effective strength of electromagnetic fields. Fundamentally, such high-field enhancement can alter the local density of states experienced by a photoactive molecule to unprecedented degrees and control its exchange of energy with light. For a sufficiently strong field enhancement, one enters the strong-coupling regime, where the energy exchange between the excited states of molecules/materials and plasmons is faster than the de-coherence processes of the system. As a result, the excitonic state of the molecule becomes entangled with the photonic mode, forming hybrid excitonic-photonic states. These hybrid-states are part light, part matter and allow for characteristic Rabi oscillations of atomic excitations to be observed. Until recently, the conditions for achieving strong-coupling were most commonly met at low temperatures, where de-coherence processes are suppressed. As a major step forward, we have recently demonstrated room-temperature strong coupling of single molecules in a plasmonic nano-cavity [1] which was achieved using a host-guest chemistry technique, controlling matter at the molecular level. Concurrently, linking nano-spectroscopy of quantum dots with strong coupling allows to lithographically realise a strong-coupling set-up that couples dark plasmonic modes and quantum dots [2]. Remarkably, through strong coupling we obtain spectroscopic access to otherwise veiled states (such as the charged trion state) enabled through a strong-coupling induced speed up of the radiative dynamics of the quantum dot states [3]. Considering the key importance of strong coupling in quantum optics our findings pave the road for a wide range of ultrafast quantum optics experiments and quantum technologies at ambient conditions. Moreover, the pronounced position-dependent spectral changes may lead to new types of quantum sensors and near-field quantum imaging modalities. Finally we shall consider strong coupling in hyperbolic metamaterials. \n\nReferences\n[1] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Sherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess and J. J. Baumberg, Nature 535, 127 (2016). \n[2] N Kongsuwan, A Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg and O. Hess, ACS Photonics 5, 186 (2017)\n[3] H. Gross, J. M. Hamm, T. Tuffarelli, O. Hess and B. Hecht, Science Advances 4, eaar4906 (2018).","PeriodicalId":169708,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2018","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong coupling in nanoplasmonic cavities and metamaterials (Conference Presentation)\",\"authors\":\"O. Hess\",\"doi\":\"10.1117/12.2322579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoplasmonic (meta-)materials and nanophotonics have the unique ability to confine light in extremely sub-wavelength volumes and thereby strongly enhance the effective strength of electromagnetic fields. Fundamentally, such high-field enhancement can alter the local density of states experienced by a photoactive molecule to unprecedented degrees and control its exchange of energy with light. For a sufficiently strong field enhancement, one enters the strong-coupling regime, where the energy exchange between the excited states of molecules/materials and plasmons is faster than the de-coherence processes of the system. As a result, the excitonic state of the molecule becomes entangled with the photonic mode, forming hybrid excitonic-photonic states. These hybrid-states are part light, part matter and allow for characteristic Rabi oscillations of atomic excitations to be observed. Until recently, the conditions for achieving strong-coupling were most commonly met at low temperatures, where de-coherence processes are suppressed. As a major step forward, we have recently demonstrated room-temperature strong coupling of single molecules in a plasmonic nano-cavity [1] which was achieved using a host-guest chemistry technique, controlling matter at the molecular level. Concurrently, linking nano-spectroscopy of quantum dots with strong coupling allows to lithographically realise a strong-coupling set-up that couples dark plasmonic modes and quantum dots [2]. Remarkably, through strong coupling we obtain spectroscopic access to otherwise veiled states (such as the charged trion state) enabled through a strong-coupling induced speed up of the radiative dynamics of the quantum dot states [3]. Considering the key importance of strong coupling in quantum optics our findings pave the road for a wide range of ultrafast quantum optics experiments and quantum technologies at ambient conditions. Moreover, the pronounced position-dependent spectral changes may lead to new types of quantum sensors and near-field quantum imaging modalities. Finally we shall consider strong coupling in hyperbolic metamaterials. \\n\\nReferences\\n[1] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Sherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess and J. J. Baumberg, Nature 535, 127 (2016). \\n[2] N Kongsuwan, A Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg and O. Hess, ACS Photonics 5, 186 (2017)\\n[3] H. Gross, J. M. Hamm, T. Tuffarelli, O. Hess and B. Hecht, Science Advances 4, eaar4906 (2018).\",\"PeriodicalId\":169708,\"journal\":{\"name\":\"Metamaterials, Metadevices, and Metasystems 2018\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metamaterials, Metadevices, and Metasystems 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2322579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials, Metadevices, and Metasystems 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2322579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米等离子体(元)材料和纳米光子学具有将光限制在极亚波长范围内的独特能力,从而大大提高了电磁场的有效强度。从根本上说,这种高场增强可以将光活性分子所经历的局部态密度改变到前所未有的程度,并控制其与光的能量交换。对于足够强的场增强,进入强耦合状态,其中分子/材料激发态和等离子体激元之间的能量交换比系统的脱相干过程快。结果,分子的激子态与光子模式纠缠在一起,形成激子-光子混合态。这些混合态部分是光,部分是物质,并允许观察到原子激发的特征拉比振荡。直到最近,实现强耦合的条件最常在低温下满足,在低温下,脱相干过程被抑制。作为向前迈出的重要一步,我们最近展示了等离子体纳米腔中单分子的室温强耦合[1],这是使用主客体化学技术实现的,在分子水平上控制物质。同时,将量子点的纳米光谱与强耦合联系起来,可以平版实现暗等离子体模式和量子点耦合的强耦合设置[2]。值得注意的是,通过强耦合,我们获得了通过强耦合诱导量子点态辐射动力学加速而实现的其他隐蔽状态(如带电三角态)的光谱访问[3]。考虑到强耦合在量子光学中的关键重要性,我们的发现为超快量子光学实验和环境条件下的量子技术铺平了道路。此外,明显的位置相关光谱变化可能导致新型量子传感器和近场量子成像模式。最后,我们将考虑双曲型超材料中的强耦合。[1]陈建军,陈建军,陈建军,陈建军,陈建军,陈建军,陈建军,陈建军,陈建军,陈建军,陈建军,陈建军,陈建军。[2]刘建军,刘建军,刘建军,等。光子学与光子学研究进展[j] .光子学进展,2016,36(1):1 - 2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strong coupling in nanoplasmonic cavities and metamaterials (Conference Presentation)
Nanoplasmonic (meta-)materials and nanophotonics have the unique ability to confine light in extremely sub-wavelength volumes and thereby strongly enhance the effective strength of electromagnetic fields. Fundamentally, such high-field enhancement can alter the local density of states experienced by a photoactive molecule to unprecedented degrees and control its exchange of energy with light. For a sufficiently strong field enhancement, one enters the strong-coupling regime, where the energy exchange between the excited states of molecules/materials and plasmons is faster than the de-coherence processes of the system. As a result, the excitonic state of the molecule becomes entangled with the photonic mode, forming hybrid excitonic-photonic states. These hybrid-states are part light, part matter and allow for characteristic Rabi oscillations of atomic excitations to be observed. Until recently, the conditions for achieving strong-coupling were most commonly met at low temperatures, where de-coherence processes are suppressed. As a major step forward, we have recently demonstrated room-temperature strong coupling of single molecules in a plasmonic nano-cavity [1] which was achieved using a host-guest chemistry technique, controlling matter at the molecular level. Concurrently, linking nano-spectroscopy of quantum dots with strong coupling allows to lithographically realise a strong-coupling set-up that couples dark plasmonic modes and quantum dots [2]. Remarkably, through strong coupling we obtain spectroscopic access to otherwise veiled states (such as the charged trion state) enabled through a strong-coupling induced speed up of the radiative dynamics of the quantum dot states [3]. Considering the key importance of strong coupling in quantum optics our findings pave the road for a wide range of ultrafast quantum optics experiments and quantum technologies at ambient conditions. Moreover, the pronounced position-dependent spectral changes may lead to new types of quantum sensors and near-field quantum imaging modalities. Finally we shall consider strong coupling in hyperbolic metamaterials. References [1] R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Sherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess and J. J. Baumberg, Nature 535, 127 (2016). [2] N Kongsuwan, A Demetriadou, R. Chikkaraddy, F. Benz, V. A. Turek, U. F. Keyser, J. J. Baumberg and O. Hess, ACS Photonics 5, 186 (2017) [3] H. Gross, J. M. Hamm, T. Tuffarelli, O. Hess and B. Hecht, Science Advances 4, eaar4906 (2018).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 10719 Magnetooptic rigorous coupled wave analysis: numerical investigation of nonreciprocal waveguiding structures (Conference Presentation) Metasurfaces for enhanced nonlinear optics and quantum imaging (Conference Presentation) Wavelength-dependent third harmonic generation in plasmonic gold nanoantennas: quantitative determination of the d-band influence (Conference Presentation) Time-bandwidth limit and reciprocity in optical nanostructures (Conference Presentation)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1