基于rank-score特征的移动使用预测特征融合

Chen Sun, Yang Wang, Jun Zheng, D. Hsu
{"title":"基于rank-score特征的移动使用预测特征融合","authors":"Chen Sun, Yang Wang, Jun Zheng, D. Hsu","doi":"10.1109/ICCI-CC.2013.6622246","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigate feature fusion problem for mobile usage prediction using combinatorial fusion analysis (CFA). CFA uses the rank-score characteristics (RSC) function to guide the process of selecting score-based fusion (SF) or rank-based fusion (RF). We study the feature fusion of two mobile adaptive user interface applications: dynamic shortcuts for application launching and dynamic contact list, which improve the usability of mobile devices through usage predication. Our results confirm that for mobile usage prediction RSC function is useful for feature fusion decision. It also proves that RF outperforms SF when the features have unique scoring behavior and relatively high performance.","PeriodicalId":130244,"journal":{"name":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Feature fusion for mobile usage prediction using rank-score characteristics\",\"authors\":\"Chen Sun, Yang Wang, Jun Zheng, D. Hsu\",\"doi\":\"10.1109/ICCI-CC.2013.6622246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to investigate feature fusion problem for mobile usage prediction using combinatorial fusion analysis (CFA). CFA uses the rank-score characteristics (RSC) function to guide the process of selecting score-based fusion (SF) or rank-based fusion (RF). We study the feature fusion of two mobile adaptive user interface applications: dynamic shortcuts for application launching and dynamic contact list, which improve the usability of mobile devices through usage predication. Our results confirm that for mobile usage prediction RSC function is useful for feature fusion decision. It also proves that RF outperforms SF when the features have unique scoring behavior and relatively high performance.\",\"PeriodicalId\":130244,\"journal\":{\"name\":\"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2013.6622246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2013.6622246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文的目的是研究基于组合融合分析(CFA)的移动用户预测特征融合问题。CFA使用秩-分数特征(RSC)函数来指导选择基于分数的融合(SF)或基于秩的融合(RF)的过程。研究了两种移动自适应用户界面应用的特征融合:应用启动的动态快捷方式和动态联系人列表,通过使用预测提高移动设备的可用性。我们的研究结果证实了RSC函数对移动使用预测的特征融合决策是有用的。当特征具有独特的评分行为和相对较高的性能时,RF优于SF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature fusion for mobile usage prediction using rank-score characteristics
The aim of this paper is to investigate feature fusion problem for mobile usage prediction using combinatorial fusion analysis (CFA). CFA uses the rank-score characteristics (RSC) function to guide the process of selecting score-based fusion (SF) or rank-based fusion (RF). We study the feature fusion of two mobile adaptive user interface applications: dynamic shortcuts for application launching and dynamic contact list, which improve the usability of mobile devices through usage predication. Our results confirm that for mobile usage prediction RSC function is useful for feature fusion decision. It also proves that RF outperforms SF when the features have unique scoring behavior and relatively high performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordering: A reliable qualitative information for the alignment of sketch and metric maps Visual words sequence alignment for image classification Survey of measures for the structural dimension of ontologies An emotional regulation model with memories for virtual agents Visual words selection based on class separation measures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1