具有历史的机器人情感模型

Xinyi Zhang, S. Alves, G. Nejat, B. Benhabib
{"title":"具有历史的机器人情感模型","authors":"Xinyi Zhang, S. Alves, G. Nejat, B. Benhabib","doi":"10.1109/IRIS.2017.8250127","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel robot emotion model that can be used for social robots engaged in human-robot interactions (HRI). The proposed model effectively determines the robot's emotional state based on its own emotion history, the affect of the user whom the robot is interacting with, and the HRI task at hand. The model uniquely uses an nth order Markov Model (MM) to track the robot's emotion history during interactions. Simulated experiments were conducted using the robot emotion model to persuade different users to comply with various tasks. The results showed that the model is able to effectively determine a robot's emotion based on different input scenarios. Furthermore, the novel use of emotion history allows the robot emotion model to be trained faster.","PeriodicalId":213724,"journal":{"name":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A robot emotion model with history\",\"authors\":\"Xinyi Zhang, S. Alves, G. Nejat, B. Benhabib\",\"doi\":\"10.1109/IRIS.2017.8250127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel robot emotion model that can be used for social robots engaged in human-robot interactions (HRI). The proposed model effectively determines the robot's emotional state based on its own emotion history, the affect of the user whom the robot is interacting with, and the HRI task at hand. The model uniquely uses an nth order Markov Model (MM) to track the robot's emotion history during interactions. Simulated experiments were conducted using the robot emotion model to persuade different users to comply with various tasks. The results showed that the model is able to effectively determine a robot's emotion based on different input scenarios. Furthermore, the novel use of emotion history allows the robot emotion model to be trained faster.\",\"PeriodicalId\":213724,\"journal\":{\"name\":\"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRIS.2017.8250127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRIS.2017.8250127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们提出了一种新的机器人情感模型,可用于从事人机交互(HRI)的社交机器人。该模型基于机器人自身的情绪历史、与机器人交互的用户的影响以及手头的HRI任务,有效地确定了机器人的情绪状态。该模型独特地使用n阶马尔可夫模型(MM)来跟踪机器人在交互过程中的情感历史。利用机器人情感模型进行仿真实验,以说服不同的用户服从不同的任务。结果表明,该模型能够根据不同的输入场景有效地判断机器人的情绪。此外,情感历史的新颖使用使得机器人情感模型的训练速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robot emotion model with history
In this paper, we present a novel robot emotion model that can be used for social robots engaged in human-robot interactions (HRI). The proposed model effectively determines the robot's emotional state based on its own emotion history, the affect of the user whom the robot is interacting with, and the HRI task at hand. The model uniquely uses an nth order Markov Model (MM) to track the robot's emotion history during interactions. Simulated experiments were conducted using the robot emotion model to persuade different users to comply with various tasks. The results showed that the model is able to effectively determine a robot's emotion based on different input scenarios. Furthermore, the novel use of emotion history allows the robot emotion model to be trained faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Twin-rotor MIMO system and its control using interval type-2 fuzzy logic Sit-to-stand and stand-to-sit crutch use for lower extremity powered exoskeletons Visual inspection system for smart manufacture of home appliances A novel clutch coupled nonholonomic wheeled mobile robot mechanism to mechanically minimize deduced reckoning error 3D object recognition from tactile data acquired at salient points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1