Ning Pan, Haoping Wang, Yang Tian, N. Christov, I. Simeonov
{"title":"基于极值搜索的两段厌氧消化过程组合递归模型自由控制","authors":"Ning Pan, Haoping Wang, Yang Tian, N. Christov, I. Simeonov","doi":"10.32006/eeep.2022.1.4555","DOIUrl":null,"url":null,"abstract":"In this paper, a new structure of extremum seeking algorithm is applied to the two-stage anaerobic digestion process to maximize the outflow rate of both hydrogen and methane. The model of the two-stage AD process is presented, which provides the characteristics of the total gas production rate. Based on the original Extremum Seeking Control (ESC), a novel Composed Recursive Model Free Controller (CRMFC) is added for maximum tracking for the gas production in the bioreactors. The proposed controller comprises a recursive model free stabilization term and a recursive time delay compensation term. Standard ESC, Newton-based ESC and Kalman filter (KF) based ESC are respectively combined with the new model-free controller to verify the proposed structure. Numerical simulations illustrate the performance of the proposed controller.","PeriodicalId":369361,"journal":{"name":"Ecological Engineering and Environment Protection","volume":"48 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"EXTREMUM SEEKING BASED COMPOSED RECURSIVE MODEL FREE CONTROL OF TWO-STAGE ANAEROBIC DIGESTION PROCESS\",\"authors\":\"Ning Pan, Haoping Wang, Yang Tian, N. Christov, I. Simeonov\",\"doi\":\"10.32006/eeep.2022.1.4555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new structure of extremum seeking algorithm is applied to the two-stage anaerobic digestion process to maximize the outflow rate of both hydrogen and methane. The model of the two-stage AD process is presented, which provides the characteristics of the total gas production rate. Based on the original Extremum Seeking Control (ESC), a novel Composed Recursive Model Free Controller (CRMFC) is added for maximum tracking for the gas production in the bioreactors. The proposed controller comprises a recursive model free stabilization term and a recursive time delay compensation term. Standard ESC, Newton-based ESC and Kalman filter (KF) based ESC are respectively combined with the new model-free controller to verify the proposed structure. Numerical simulations illustrate the performance of the proposed controller.\",\"PeriodicalId\":369361,\"journal\":{\"name\":\"Ecological Engineering and Environment Protection\",\"volume\":\"48 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering and Environment Protection\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32006/eeep.2022.1.4555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering and Environment Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32006/eeep.2022.1.4555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EXTREMUM SEEKING BASED COMPOSED RECURSIVE MODEL FREE CONTROL OF TWO-STAGE ANAEROBIC DIGESTION PROCESS
In this paper, a new structure of extremum seeking algorithm is applied to the two-stage anaerobic digestion process to maximize the outflow rate of both hydrogen and methane. The model of the two-stage AD process is presented, which provides the characteristics of the total gas production rate. Based on the original Extremum Seeking Control (ESC), a novel Composed Recursive Model Free Controller (CRMFC) is added for maximum tracking for the gas production in the bioreactors. The proposed controller comprises a recursive model free stabilization term and a recursive time delay compensation term. Standard ESC, Newton-based ESC and Kalman filter (KF) based ESC are respectively combined with the new model-free controller to verify the proposed structure. Numerical simulations illustrate the performance of the proposed controller.