M. M. Mohammed, M. B. Hussein, Y. Sulfab, Abdelwahab Abuelgasim Mohammed Adam
{"title":"新取代恶唑硫代氨基脲配体及其Co (II)和Ni (II)配合物的合成、结构表征和抗菌活性","authors":"M. M. Mohammed, M. B. Hussein, Y. Sulfab, Abdelwahab Abuelgasim Mohammed Adam","doi":"10.36348/sijcms.2023.v06i04.003","DOIUrl":null,"url":null,"abstract":"The New ligand 5-methyl-2-(2-thienyl)-1,3-oxazole-4-carbaldehyde thiosemicarbazone (HL)(1) was synthesized. This ligand reacted with Co(II) and Ni(II) chloride in ratio 1:2 metal:ligand afforded two complexes, [Co(LH)]Cl2 (2) and [Ni(HL)2]Cl2 (3). The ligand and its metal (II) complexes have been characterized by spectroscopic techniques. The X-ray structural studies revealed that the free ligand exist in thione form and remain as neutral tridentate with NNS donor atoms in the tow complexes beside presence of uncoordinated chloride ions in the cavities of the crystal lattice of the complexes. One of these chlorides in complex (2) is hydrogen bonded to a proton of the amine of the ligand. While in complex (3) the chloride bonded to proton of imine (-N2H) of the ligand and the coordination environment has a distorted octahedral. The oxazole N and S atoms in the two complexes are cis to each other whereas the azomethine N atoms are trans coordinated. The ligand and its metal complexes were tested for their in vitro biological activity against six standard microorganisms: two Gram positive namely Bacillus subtilis and Micrococcus luteus, and one Gram negative bacteria Escherichia coli and three fungi: Saccharomyces cerevisiae (Baker’s yeast), Mucor spec., and Aspergillus niger, at a concentration 100µg/ml.","PeriodicalId":230897,"journal":{"name":"Scholars International Journal of Chemistry and Material Sciences","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, Structural Characterization and Antimicrobial Activity of New Substituted Oxazole Thiosemicarbazone Ligand and its Co (II) and Ni (II) Complexes\",\"authors\":\"M. M. Mohammed, M. B. Hussein, Y. Sulfab, Abdelwahab Abuelgasim Mohammed Adam\",\"doi\":\"10.36348/sijcms.2023.v06i04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The New ligand 5-methyl-2-(2-thienyl)-1,3-oxazole-4-carbaldehyde thiosemicarbazone (HL)(1) was synthesized. This ligand reacted with Co(II) and Ni(II) chloride in ratio 1:2 metal:ligand afforded two complexes, [Co(LH)]Cl2 (2) and [Ni(HL)2]Cl2 (3). The ligand and its metal (II) complexes have been characterized by spectroscopic techniques. The X-ray structural studies revealed that the free ligand exist in thione form and remain as neutral tridentate with NNS donor atoms in the tow complexes beside presence of uncoordinated chloride ions in the cavities of the crystal lattice of the complexes. One of these chlorides in complex (2) is hydrogen bonded to a proton of the amine of the ligand. While in complex (3) the chloride bonded to proton of imine (-N2H) of the ligand and the coordination environment has a distorted octahedral. The oxazole N and S atoms in the two complexes are cis to each other whereas the azomethine N atoms are trans coordinated. The ligand and its metal complexes were tested for their in vitro biological activity against six standard microorganisms: two Gram positive namely Bacillus subtilis and Micrococcus luteus, and one Gram negative bacteria Escherichia coli and three fungi: Saccharomyces cerevisiae (Baker’s yeast), Mucor spec., and Aspergillus niger, at a concentration 100µg/ml.\",\"PeriodicalId\":230897,\"journal\":{\"name\":\"Scholars International Journal of Chemistry and Material Sciences\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scholars International Journal of Chemistry and Material Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36348/sijcms.2023.v06i04.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scholars International Journal of Chemistry and Material Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36348/sijcms.2023.v06i04.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis, Structural Characterization and Antimicrobial Activity of New Substituted Oxazole Thiosemicarbazone Ligand and its Co (II) and Ni (II) Complexes
The New ligand 5-methyl-2-(2-thienyl)-1,3-oxazole-4-carbaldehyde thiosemicarbazone (HL)(1) was synthesized. This ligand reacted with Co(II) and Ni(II) chloride in ratio 1:2 metal:ligand afforded two complexes, [Co(LH)]Cl2 (2) and [Ni(HL)2]Cl2 (3). The ligand and its metal (II) complexes have been characterized by spectroscopic techniques. The X-ray structural studies revealed that the free ligand exist in thione form and remain as neutral tridentate with NNS donor atoms in the tow complexes beside presence of uncoordinated chloride ions in the cavities of the crystal lattice of the complexes. One of these chlorides in complex (2) is hydrogen bonded to a proton of the amine of the ligand. While in complex (3) the chloride bonded to proton of imine (-N2H) of the ligand and the coordination environment has a distorted octahedral. The oxazole N and S atoms in the two complexes are cis to each other whereas the azomethine N atoms are trans coordinated. The ligand and its metal complexes were tested for their in vitro biological activity against six standard microorganisms: two Gram positive namely Bacillus subtilis and Micrococcus luteus, and one Gram negative bacteria Escherichia coli and three fungi: Saccharomyces cerevisiae (Baker’s yeast), Mucor spec., and Aspergillus niger, at a concentration 100µg/ml.