基于bim驱动的机器人地面平台室内施工进度自动检测任务规划与导航

A. Ibrahim, A. Sabet, M. Golparvar-Fard
{"title":"基于bim驱动的机器人地面平台室内施工进度自动检测任务规划与导航","authors":"A. Ibrahim, A. Sabet, M. Golparvar-Fard","doi":"10.35490/EC3.2019.195","DOIUrl":null,"url":null,"abstract":"Reconstructing a complete and accurate 3D representation of indoor construction scenes is an important step towards automated visual monitoring of construction projects. For fast access to construction’s as-built visual data, construction drones are programmed to autonomously navigate the outdoor space and collect the data. However, due to limited satellite signal indoors, ground rovers provide safer and more reliable autonomous navigation inside the narrow indoor navigable space. In this paper we present a novel pipeline for 4D BIM-driven mapping of the as- built state of indoor construction using 2D Light Detection and Ranging (LiDAR) sensors mounted on an Unmanned Ground Vehicle (UGV). The developed method consists of (1) BIM-driven data collection planning; (2) automatic mission navigation; (3) LiDAR data collection and (4) dynamic obstacle avoidance. Experiments show the applicability of the developed data collection strategy and the improved safety of automatic mission execution using UGV.","PeriodicalId":126601,"journal":{"name":"Proceedings of the 2019 European Conference on Computing in Construction","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"BIM-driven mission planning and navigation for automatic indoor construction progress detection using robotic ground platform\",\"authors\":\"A. Ibrahim, A. Sabet, M. Golparvar-Fard\",\"doi\":\"10.35490/EC3.2019.195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconstructing a complete and accurate 3D representation of indoor construction scenes is an important step towards automated visual monitoring of construction projects. For fast access to construction’s as-built visual data, construction drones are programmed to autonomously navigate the outdoor space and collect the data. However, due to limited satellite signal indoors, ground rovers provide safer and more reliable autonomous navigation inside the narrow indoor navigable space. In this paper we present a novel pipeline for 4D BIM-driven mapping of the as- built state of indoor construction using 2D Light Detection and Ranging (LiDAR) sensors mounted on an Unmanned Ground Vehicle (UGV). The developed method consists of (1) BIM-driven data collection planning; (2) automatic mission navigation; (3) LiDAR data collection and (4) dynamic obstacle avoidance. Experiments show the applicability of the developed data collection strategy and the improved safety of automatic mission execution using UGV.\",\"PeriodicalId\":126601,\"journal\":{\"name\":\"Proceedings of the 2019 European Conference on Computing in Construction\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 European Conference on Computing in Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35490/EC3.2019.195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 European Conference on Computing in Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35490/EC3.2019.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

重建室内施工场景的完整、准确的三维表示是实现施工项目可视化自动化监控的重要一步。为了快速访问施工现场的视觉数据,施工无人机被编程为自主导航室外空间并收集数据。然而,由于室内卫星信号有限,地面漫游车在狭窄的室内可导航空间内提供更安全可靠的自主导航。在本文中,我们提出了一种新的管道,用于bim驱动的室内建筑的建成状态映射,使用安装在无人地面车辆(UGV)上的二维光探测和测距(LiDAR)传感器。所开发的方法包括:(1)bim驱动的数据收集规划;(2)任务自动导航;(3)激光雷达数据采集;(4)动态避障。实验证明了所提出的数据采集策略的适用性,提高了UGV自动执行任务的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BIM-driven mission planning and navigation for automatic indoor construction progress detection using robotic ground platform
Reconstructing a complete and accurate 3D representation of indoor construction scenes is an important step towards automated visual monitoring of construction projects. For fast access to construction’s as-built visual data, construction drones are programmed to autonomously navigate the outdoor space and collect the data. However, due to limited satellite signal indoors, ground rovers provide safer and more reliable autonomous navigation inside the narrow indoor navigable space. In this paper we present a novel pipeline for 4D BIM-driven mapping of the as- built state of indoor construction using 2D Light Detection and Ranging (LiDAR) sensors mounted on an Unmanned Ground Vehicle (UGV). The developed method consists of (1) BIM-driven data collection planning; (2) automatic mission navigation; (3) LiDAR data collection and (4) dynamic obstacle avoidance. Experiments show the applicability of the developed data collection strategy and the improved safety of automatic mission execution using UGV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An IFC data preparation workflow for building energy performance simulation BIM-based Holonic System for Real-Time Pathfinding in Building Emergency Scenario Semantic and syntactic interoperability of BIM and asset management data Digital built environment maturity model: Digital twins advancing smart infrastructure asset management Optimum topological configurations of sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1