用于系统辨识的状态空间神经网络:稳定性和复杂性

P. Gil, J. Henriques, A. Dourado, H. Duarte-Ramos
{"title":"用于系统辨识的状态空间神经网络:稳定性和复杂性","authors":"P. Gil, J. Henriques, A. Dourado, H. Duarte-Ramos","doi":"10.1109/ICCIS.2006.252333","DOIUrl":null,"url":null,"abstract":"The problem of order estimation and global stability in affine three-layered state-space neural networks is here addressed. An upper bound for the number of neurons to be inserted in the hidden layer is computed using a subspace technique. Some sufficient conditions for the global asymptotic stability are presented using the Lyapunov stability theory and the contraction mapping theorem","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On State-Space Neural Networks for Systems Identification: Stability and Complexity\",\"authors\":\"P. Gil, J. Henriques, A. Dourado, H. Duarte-Ramos\",\"doi\":\"10.1109/ICCIS.2006.252333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of order estimation and global stability in affine three-layered state-space neural networks is here addressed. An upper bound for the number of neurons to be inserted in the hidden layer is computed using a subspace technique. Some sufficient conditions for the global asymptotic stability are presented using the Lyapunov stability theory and the contraction mapping theorem\",\"PeriodicalId\":296028,\"journal\":{\"name\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2006.252333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了仿射三层状态空间神经网络的阶数估计和全局稳定性问题。使用子空间技术计算要插入隐藏层的神经元数量的上界。利用Lyapunov稳定性理论和收缩映射定理,给出了全局渐近稳定的几个充分条件
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On State-Space Neural Networks for Systems Identification: Stability and Complexity
The problem of order estimation and global stability in affine three-layered state-space neural networks is here addressed. An upper bound for the number of neurons to be inserted in the hidden layer is computed using a subspace technique. Some sufficient conditions for the global asymptotic stability are presented using the Lyapunov stability theory and the contraction mapping theorem
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer Control Strategy of Dynamics Control System of Vehicle A Fuzzy Multiple Critera Decision Making Method Gait Recognition Considering Directions of Walking Nonlinear Diffusion Driven by Local Features for Image Denoising Designing of an Adaptive Adcock Array and Reducing the Effects of Other Transmitters, Unwanted Reflections and Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1