移动手持平板电脑上的自然特征跟踪

Madjid Maidi, M. Preda, M. Dailey, Sirisilp Kongsilp
{"title":"移动手持平板电脑上的自然特征跟踪","authors":"Madjid Maidi, M. Preda, M. Dailey, Sirisilp Kongsilp","doi":"10.1109/ICSIPA.2013.6708012","DOIUrl":null,"url":null,"abstract":"This paper presents a natural feature tracking system for object recognition in real-life environments. The system is based on a local keypoint descriptor method optimized and adapted to extract salient regions within the image. Each object in the gallery is characterized by keypoints and corresponding local descriptors. The method first identifies gallery object features in new images using nearest neighbor classification. It then estimates camera pose and augments the image with registered synthetic graphics. We describe the optimizations necessary to enable real-time performance on a mobile tablet. An experimental evaluation of the system in real environments demonstrates that the method is accurate and robust.","PeriodicalId":440373,"journal":{"name":"2013 IEEE International Conference on Signal and Image Processing Applications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Natural feature tracking on a mobile handheld Tablet\",\"authors\":\"Madjid Maidi, M. Preda, M. Dailey, Sirisilp Kongsilp\",\"doi\":\"10.1109/ICSIPA.2013.6708012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a natural feature tracking system for object recognition in real-life environments. The system is based on a local keypoint descriptor method optimized and adapted to extract salient regions within the image. Each object in the gallery is characterized by keypoints and corresponding local descriptors. The method first identifies gallery object features in new images using nearest neighbor classification. It then estimates camera pose and augments the image with registered synthetic graphics. We describe the optimizations necessary to enable real-time performance on a mobile tablet. An experimental evaluation of the system in real environments demonstrates that the method is accurate and robust.\",\"PeriodicalId\":440373,\"journal\":{\"name\":\"2013 IEEE International Conference on Signal and Image Processing Applications\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Signal and Image Processing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2013.6708012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2013.6708012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种用于现实环境中目标识别的自然特征跟踪系统。该系统基于一种局部关键点描述符方法,该方法经过优化和调整,用于提取图像中的显著区域。画廊中的每个对象都具有关键点和相应的局部描述符。该方法首先使用最近邻分类识别新图像中的图库对象特征。然后,它估计相机的姿势,并用注册的合成图形增强图像。我们描述了在移动平板电脑上实现实时性能所需的优化。系统在实际环境中的实验验证了该方法的准确性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Natural feature tracking on a mobile handheld Tablet
This paper presents a natural feature tracking system for object recognition in real-life environments. The system is based on a local keypoint descriptor method optimized and adapted to extract salient regions within the image. Each object in the gallery is characterized by keypoints and corresponding local descriptors. The method first identifies gallery object features in new images using nearest neighbor classification. It then estimates camera pose and augments the image with registered synthetic graphics. We describe the optimizations necessary to enable real-time performance on a mobile tablet. An experimental evaluation of the system in real environments demonstrates that the method is accurate and robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
List of reviewers Multi-Level View Synthesis (MLVS) based on Depth Image Layer Separation (DILS) algorithm for multi-camera view system Mouth covered detection for yawn Depth Image Layers Separation (DILS) algorithm of image view synthesis based on stereo vision Accurate videogrammetric data for human limb movement research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1